The European Physical Journal C

, Volume 51, Issue 3, pp 697–699 | Cite as

An SU(3) symmetry for light neutrinos

  • RiazuddinEmail author
Regular Article - Theoretical Physics


It is proposed that light neutrinos form a triplet in a global SU(3) symmetry in the mass eigenstate basis. Assuming that the SU(3) symmetry is broken in the direction \((-a\lambda_{3}+\frac{b}{\sqrt{3}}\lambda_{8})\), and after going to the flavor basis, we predict the atmospheric mixing angles sin2θ23=0.5 and sinθ13=0, if νμ–ντ symmetry is assumed. In the flavor basis, the diagonal part of the matrix coefficient of b (the dominant part) is found to transform like \((\lambda_{3}+\frac{1}{\sqrt{3}}\lambda_{8})\). Imposing the same condition on the matrix coefficient of a fixes the solar mixing angle, \(\sin^{2}\theta_{12}= \frac{1}{3}\). The implications for neutrinoless double beta decay are discussed.


Neutrino Mass Mass Eigenstates Light Neutrino Neutrino Mass Matrix Family Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. de Gouvea, hep-ph/0411274Google Scholar
  2. 2.
    LSND Collaboration, A. Aguilar et al., Phys. Rev. D 64, 112007 (2001)CrossRefADSGoogle Scholar
  3. 3.
    M. Maltoni, T. Schwetz, M.A. Tortola, J.W.F. Valle, New J. Phys. 6, 122 (2004), hep-ph/0405172, and many references thereinCrossRefADSGoogle Scholar
  4. 4.
    P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 458, 79 (1999)CrossRefADSGoogle Scholar
  5. 5.
    P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 458, 167 (2002)ADSGoogle Scholar
  6. 6.
    Particle Data Group Collaboration, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  7. 7.
    I. de Mederios Varzielas, S.F. King, G.G. Ross, Phys. Lett. B 644, 153 (2007), hep-ph/0512313CrossRefADSGoogle Scholar
  8. 8.
    I. de Mederios Varzielas, G.G. Ross, Nucl. Phys. B 733, 31 (2006), hep-ph/0507176 V.2CrossRefADSGoogle Scholar
  9. 9.
    M. Maltoni et al., Phys. Rev. D 68, 113010 (2003)CrossRefADSGoogle Scholar
  10. 10.
    C.S. Lam, Phys. Rev. D 71, 093001 (2005)CrossRefADSGoogle Scholar
  11. 11.
    K. Matsuda, H. Nishivra, Phys. Rev. D 71, 07001 (2005)CrossRefGoogle Scholar
  12. 12.
    C.S. Lam, Phys. Lett. B 507, 214 (2001), hep-ph/0503159CrossRefADSGoogle Scholar
  13. 13.
    T. Fukuyama, H. Nishiura, hep-ph/9702253Google Scholar
  14. 14.
    E. Ma, M. Raidal, Phys. Rev. Lett. 87, 011802 (2001)CrossRefADSGoogle Scholar
  15. 15.
    T. Kitabayashi, M. Yasue, Phys. Lett. B 524, 308 (2002)CrossRefADSGoogle Scholar
  16. 16.
    T. Kitabayashi, M. Yasue, Phys. Rev. D 67, 015006 (2003)CrossRefGoogle Scholar
  17. 17.
    P. Harrison, W.G. Scott, Phys. Lett. B 547, 219 (2002)CrossRefADSGoogle Scholar
  18. 18.
    W. Grimus, L. Lavoura, hep-ph/0305046Google Scholar
  19. 19.
    W. Grimus, L. Lavoura, hep-ph/0309050Google Scholar
  20. 20.
    Y. Koide, K. Matsuda, H. Nishiura, T. Kikuchi, T. Fukuyama, Phys. Rev. D 66, 093006 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Y. Koide, Phys. Rev. D 69, 093001 (2004)CrossRefADSGoogle Scholar
  22. 22.
    I. Aizawa, M. Ishiguro, T. Kitabayashi, M. Yasue, Phys. Rev. D 70, 015011 (2004)CrossRefADSGoogle Scholar
  23. 23.
    Y.H. Ahn, S.K. Kang, C.S. Kim, J. Lee, Phys. Rev. D 73, 093005 (2006)CrossRefADSGoogle Scholar
  24. 24.
    R.N. Mohapatra, JHEP 0410, 027 (2004)CrossRefADSGoogle Scholar
  25. 25.
    W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, Nucl. Phys. B 713, 151 (2005), hep-ph/0408123zbMATHCrossRefADSGoogle Scholar
  26. 26.
    R.N. Mohapatra et al., hep-ph/0412099Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.National Centre for PhysicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations