Advertisement

Nonlinear properties of vielbein massive gravity

  • S. Groot NibbelinkEmail author
  • M. Peloso
  • M. Sexton
Regular Article - Theoretical Physics

Abstract

We propose a nonlinear extension of the Fierz–Pauli mass for the graviton through a functional of the vielbein and an external Minkowski background. The functional generalizes the notion of the measure, since it reduces to a cosmological constant if the external background is formally sent to zero. Such a term and the explicit external background emerge dynamically from a bi-gravity theory, having both a massless and a massive graviton in its spectrum, in a specific limit in which the massless mode decouples, while the massive one couples universally to matter. We investigate the massive theory using the Stückelberg method and providing a ’t Hooft–Feynman gauge fixing, in which the tensor, vector and scalar Stückelberg fields decouple. We show that this model has the softest possible ultraviolet behavior that can be expected from any generic (Lorentz-invariant) theory of massive gravity, namely that it becomes strong only at the scale Λ3=(mg 2MP)1/3.

Keywords

Cosmological Constant Mass Term Massive Gravity Nonlinear Property Massive Graviton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)CrossRefADSGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)CrossRefADSGoogle Scholar
  3. 3.
    D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)CrossRefADSGoogle Scholar
  4. 4.
    T. Damour, I.I. Kogan, A. Papazoglou, Phys. Rev. D 66, 104025 (2002)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, JHEP 0405, 074 (2004)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    C. Deffayet, G.R. Dvali, G. Gabadadze, Phys. Rev. D 65, 044023 (2002)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M.A. Luty, M. Porrati, R. Rattazzi, JHEP 0309, 029 (2003)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. Nicolis, R. Rattazzi, JHEP 0406, 059 (2004)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C. Charmousis, R. Gregory, N. Kaloper, A. Padilla, arXiv:hep-th/0604086Google Scholar
  11. 11.
    M. Fierz, W. Pauli, Proc. R. Soc. London A 173, 211 (1939)zbMATHADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  13. 13.
    V. Rubakov, arXiv:hep-th/0407104Google Scholar
  14. 14.
    S.L. Dubovsky, JHEP 0410, 076 (2004)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    B.M. Gripaios, JHEP 0410, 069 (2004)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    N. Arkani-Hamed, H. Georgi, M.D. Schwartz, Ann. Phys. 305, 96 (2003)zbMATHADSMathSciNetGoogle Scholar
  17. 17.
    C.J. Isham, A. Salam, J.A. Strathdee, Phys. Rev. D 3, 867 (1971)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. Groot Nibbelink, M. Peloso, Class. Quantum Grav. 22, 1313 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    H. van Dam, M.J.G. Veltman, Nucl. Phys. B 22, 397 (1970)CrossRefADSGoogle Scholar
  20. 20.
    V.I. Zakharov, JETP Lett. 12, 312 (1970)ADSGoogle Scholar
  21. 21.
    A.I. Vainshtein, Phys. Lett. B 39, 393 (1972)ADSCrossRefGoogle Scholar
  22. 22.
    C. Deffayet, G.R. Dvali, G. Gabadadze, A.I. Vainshtein, Phys. Rev. D 65, 044026 (2002)CrossRefADSGoogle Scholar
  23. 23.
    D.G. Boulware, S. Deser, Phys. Rev. D 6, 3368 (1972)CrossRefADSGoogle Scholar
  24. 24.
    G. Gabadadze, A. Gruzinov, Phys. Rev. D 72, 124007 (2005)CrossRefADSGoogle Scholar
  25. 25.
    P. Creminelli, A. Nicolis, M. Papucci, E. Trincherini, JHEP 0509, 003 (2005)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    C. Deffayet, J.W. Rombouts, Phys. Rev. D 72, 044003 (2005)CrossRefADSGoogle Scholar
  27. 27.
    M.D. Schwartz, Phys. Rev. D 68, 024029 (2003)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.Center for Mathematics and Theoretical Physics, Shanghai Institute for Advanced StudyUniversity of Science and Technology of ChinaShanghaiP.R. China
  3. 3.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations