Advertisement

The European Physical Journal C

, Volume 51, Issue 3, pp 713–719 | Cite as

Virtual effects of split-SUSY in Higgs productions at linear colliders

  • Fei Wang
  • Wenyu Wang
  • Fuqiang Xu
  • Jin Min YangEmail author
  • Huanjun Zhang
Regular Article - Theoretical Physics

Abstract

In split supersymmetry, gauginos and higgsinos are the only supersymmetric particles possibly accessible at foreseeable colliders like the CERN Large Hadron Collider (LHC) and the International Linear Collider (ILC). In order to account for the cosmic dark matter measured by WMAP, these gauginos and higgsinos are stringently constrained and could be explored at the colliders through their direct productions and/or virtual effects in some processes. The clean environment and high luminosity of the ILC render the virtual effects at percent level meaningful in unraveling the new physics effects. In this work we assume split supersymmetry and calculate the virtual effects of the WMAP-allowed gauginos and higgsinos in the Higgs productions e+e-→Zh and e+e-→νeν̄eh through WW fusion at the ILC. We find that the production cross section of e+e-→Zh can be altered by a few percent in some part of the WMAP-allowed parameter space, while the correction to the WW fusion process e+e-→νeν̄eh is below 1%. Such virtual effects are correlated with the cross sections of chargino pair productions and can offer complementary information in probing split supersymmetry at the colliders.

Keywords

Dark Matter Higgs Boson Large Hadron Collider Feynman Diagram Fusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Abe et al., hep-ph/0109166Google Scholar
  2. 2.
    T. Abe et al., hep-ex/0106056Google Scholar
  3. 3.
    J.A. Aguilar-Saavedra et al., hep-ph/0106315Google Scholar
  4. 4.
    N. Arkani-Hamed, S. Dimopoulos, hep-th/0405159Google Scholar
  5. 5.
    G.F. Giudice, A. Romanino, Nucl. Phys. B 699, 65 (2004)zbMATHCrossRefADSGoogle Scholar
  6. 6.
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice, A. Romanino, Nucl. Phys. B 709, 3 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    L. Senatore, Phys. Rev. D 71, 103510 (2005)CrossRefADSGoogle Scholar
  8. 8.
    F. Wang, W.Y. Wang, J.M. Yang, Phys. Rev. D 72, 077701 (2005)CrossRefADSGoogle Scholar
  9. 9.
    F. Wang, W.Y. Wang, J.M. Yang, Eur. Phys. J. C 46, 521 (2006)CrossRefADSGoogle Scholar
  10. 10.
    A. Pierce, Phys. Rev. D 70, 075006 (2004)CrossRefADSGoogle Scholar
  11. 11.
    A. Arvanitaki, P.W. Graham, hep-ph/0411376Google Scholar
  12. 12.
    A. Masiero, S. Profumo, P. Ullio, Nucl. Phys. B 712, 86 (2005)CrossRefADSGoogle Scholar
  13. 13.
    K. Cheung, W.-Y. Keung, Phys. Rev. D 71, 015015 (2005)CrossRefADSGoogle Scholar
  14. 14.
    J.G. Gonzalez, S. Reucroft, J. Swain, Phys. Rev. D 74, 027701 (2006)CrossRefADSGoogle Scholar
  15. 15.
    G. Gao, R.J. Oakes, J.M. Yang, Phys. Rev. D 71, 095005 (2005)CrossRefADSGoogle Scholar
  16. 16.
    J. Cao et al., Phys. Rev. D 68, 075012 (2003)CrossRefADSGoogle Scholar
  17. 17.
    G. Gao et al., Phys. Rev. D 66, 015007 (2002)CrossRefADSGoogle Scholar
  18. 18.
    H.E. Haber et al., Phys. Rev. D 63, 055004 (2001)CrossRefADSGoogle Scholar
  19. 19.
    M.J. Herrero, S. Peñaranda, D. Temes, Phys. Rev. D 64, 115003 (2001)CrossRefADSGoogle Scholar
  20. 20.
    A. Dobado, M.J. Herrero, Phys. Rev. D 65, 075023 (2002)CrossRefADSGoogle Scholar
  21. 21.
    M. Carena et al., Phys. Rev. D 60, 075010 (1999)CrossRefADSGoogle Scholar
  22. 22.
    M. Carena et al., Phys. Rev. D 62, 055008 (2000)CrossRefADSGoogle Scholar
  23. 23.
    C.S. Li et al., Phys. Rev. D 52, 5014 (1995)CrossRefADSGoogle Scholar
  24. 24.
    C.S. Li et al., Phys. Lett. B 379, 135 (1996)CrossRefADSGoogle Scholar
  25. 25.
    S. Alam, K. Hagiwara, S. Matsumoto, Phys. Rev. D 55, 1307 (1997)CrossRefADSGoogle Scholar
  26. 26.
    Z. Sullivan, Phys. Rev. D 56, 451 (1997)CrossRefADSGoogle Scholar
  27. 27.
    C.S. Li, R.J. Oakes, J.M. Yang, Phys. Rev. D 49, 293 (1994)CrossRefADSGoogle Scholar
  28. 28.
    G. Couture, C. Hamzaoui, H. Konig, Phys. Rev. D 52, 1713 (1995)CrossRefADSGoogle Scholar
  29. 29.
    J.L. Lopez, D.V. Nanopoulos, R. Rangarajan, Phys. Rev. D 56, 3100 (1997)CrossRefADSGoogle Scholar
  30. 30.
    G.M. de Divitiis, R. Petronzio, L. Silvestrini, Nucl. Phys. B 504, 45 (1997)CrossRefADSGoogle Scholar
  31. 31.
    C.S. Li et al., Phys. Lett. B 599, 92 (2004)CrossRefADSGoogle Scholar
  32. 32.
    J. Cao et al., Nucl. Phys. B 651, 87 (2003)CrossRefADSGoogle Scholar
  33. 33.
    J. Cao et al., Phys. Rev. D 74, 031701 (2006)CrossRefADSGoogle Scholar
  34. 34.
    M. Frank, I. Turan, Phys. Rev. D 74, 073014 (2006)CrossRefADSGoogle Scholar
  35. 35.
    P. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 437 (1994)CrossRefADSGoogle Scholar
  36. 36.
    T. Hahn et al., Nucl. Phys. B 652, 229 (2003)CrossRefADSGoogle Scholar
  37. 37.
    H. Eberl et al., Nucl. Phys. B 657, 378 (2003)CrossRefADSGoogle Scholar
  38. 38.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)CrossRefADSGoogle Scholar
  39. 39.
    J.F. Gunion, H.E. Haber, Nucl. Phys. B 272, 1 (1986)CrossRefADSGoogle Scholar
  40. 40.
    H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991)CrossRefADSGoogle Scholar
  41. 41.
    Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1 (1991)CrossRefADSGoogle Scholar
  42. 42.
    Y. Okada, M. Yamaguchi, T. Yanagida, Phys. Lett. B 262, 54 (1991)CrossRefADSGoogle Scholar
  43. 43.
    J. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83 (1991)CrossRefADSGoogle Scholar
  44. 44.
    J. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 262, 477 (1991)CrossRefADSGoogle Scholar
  45. 45.
    J.R. Espinosa, R.J. Zhang, JHEP 0003, 026 (2000)CrossRefADSGoogle Scholar
  46. 46.
    A. Denner, Fortschr. Phys. 41, 4 (1993)ADSGoogle Scholar
  47. 47.
    G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 153, 365 (1979)ADSCrossRefGoogle Scholar
  48. 48.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999)CrossRefADSGoogle Scholar
  49. 49.
    T. Hahn, Nucl. Phys. Proc. Suppl. 135, 333 (2004)CrossRefADSGoogle Scholar
  50. 50.
    S. Heinemeyer, hep-ph/0407244Google Scholar
  51. 51.
    W.M. Yao et al., J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  52. 52.
    K. Cheung, C.-W. Chiang, Phys. Rev. D 71, 095003 (2005)CrossRefADSGoogle Scholar
  53. 53.
    D.N. Spergel et al., astro-ph/0603449Google Scholar
  54. 54.
    LEP2 SUSY Working Group homepage,http://lepsusy.web.cern.ch/lepsusy/Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fei Wang
    • 1
  • Wenyu Wang
    • 2
  • Fuqiang Xu
    • 2
  • Jin Min Yang
    • 3
    • 2
    Email author
  • Huanjun Zhang
    • 2
    • 4
  1. 1.Center for High Energy PhysicsTsinghua UniversityBeijingP.R. China
  2. 2.Institute of Theoretical PhysicsAcademia SinicaBeijingP.R. China
  3. 3.CCAST (World Laboratory)BeijingP.R. China
  4. 4.Department of PhysicsHenan Normal UniversityXinxiangP.R. China

Personalised recommendations