Advertisement

The European Physical Journal C

, Volume 50, Issue 3, pp 603–608 | Cite as

The leading particle effect from light quark fragmentation in charm hadroproduction

  • Puze Gao
  • Bo-Qiang MaEmail author
Regular Article - Theoretical Physics

Abstract

The asymmetry of D- and D+ meson production in π-N scattering observed by the E791 experiment is a phenomenon typical for what is known as the leading particle effect in charm hadroproduction. We show that the phenomenon can be explained by the effect of light quark fragmentation into charmed hadrons (LQF). Meanwhile, the size of the LQF effect is estimated from the data of the E791 experiment. A comparison is made with the estimate of the LQF effect from the prompt like-sign dimuon rate in neutrino experiments. The influence of the LQF effect on the measurement of the nucleon strange distribution asymmetry from charged current charm production processes is briefly discussed.

Keywords

Light Quark Lead Order Charmed Hadron E791 Experiment Lead Order Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WA82 Collaboration, M. Adamovich et al., Phys. Lett. B 305, 402 (1993)CrossRefADSGoogle Scholar
  2. 2.
    G.A. Alves et al., Phys. Rev. Lett. 72, 812 (1994)CrossRefADSGoogle Scholar
  3. 3.
    Fermilab E791 Collaboration, E.M. Aitala et al., Phys. Lett. B 371, 157 (1996)CrossRefADSGoogle Scholar
  4. 4.
    Beatrice Collaboration, M. Adamovich et al., Nucl. Phys. B 495, 3 (1997)CrossRefADSGoogle Scholar
  5. 5.
    Fermilab E791 Collaboration, E.M. Aitala et al., Phys. Lett. B 411, 230 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Fermilab E791 Collaboration, E.M. Aitala et al., Phys. Lett. B 495, 42 (2000)CrossRefADSGoogle Scholar
  7. 7.
    WA89 Collaboration, M.I. Adamovich et al., Eur. Phys. J. C 8, 593 (1999)CrossRefADSGoogle Scholar
  8. 8.
    SELEX Collaboration, F.G. Garcia, et al., Phys. Lett. B 528, 49 (2002)CrossRefADSGoogle Scholar
  9. 9.
    P. Nason, S. Dawson, R.K. Ellis, Nucl. Phys. B 327, 49 (1989)CrossRefADSGoogle Scholar
  10. 10.
    S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Nucl. Phys. B 431, 453 (1994)CrossRefADSGoogle Scholar
  11. 11.
    E. Norrbin, T. Sjöstrand, Phys. Lett. B 442, 407 (1998)CrossRefADSGoogle Scholar
  12. 12.
    R. Vogt, S.J. Brodsky, Nucl. Phys. B 478, 311 (1996)CrossRefADSGoogle Scholar
  13. 13.
    E. Braaten, Y. Jia, T. Mehen, Phys. Rev. Lett. 89, 122002 (2002)CrossRefADSGoogle Scholar
  14. 14.
    C.-H. Chang, J.-P. Ma, Z.-G. Si, Phys. Rev. D 68, 014018 (2003)CrossRefADSGoogle Scholar
  15. 15.
    G.H. Arakelyan, hep-ph/9711276, and references thereinGoogle Scholar
  16. 16.
    J. Dias de Deus, F. Durães, Eur. Phys. J. C 13, 647 (2000)CrossRefADSGoogle Scholar
  17. 17.
    R.M. Godbole, D.P. Roy, Phys. Rev. Lett. 48, 1711 (1982)CrossRefADSGoogle Scholar
  18. 18.
    R.M. Godbole, D.P. Roy, Z. Phys. C 22, 39 (1984)CrossRefGoogle Scholar
  19. 19.
    R.M. Godbole, D.P. Roy, Z. Phys. C 42, 219 (1989)CrossRefGoogle Scholar
  20. 20.
    H. Burkhardt et al., Z. Phys. C 31, 39 (1986)CrossRefMathSciNetGoogle Scholar
  21. 21.
    P.H. Sandler et al., Z. Phys. C 57, 1 (1993), and references thereinCrossRefGoogle Scholar
  22. 22.
    G.P. Zeller et al., Phys. Rev. Lett. 88, 091802 (2002)CrossRefADSGoogle Scholar
  23. 23.
    G.P. Zeller et al., Phys. Rev. D 65, 111103(R) (2002)CrossRefGoogle Scholar
  24. 24.
    S.J. Brodsky, B.-Q. Ma, Phys. Lett. B 381, 317 (1996)CrossRefADSGoogle Scholar
  25. 25.
    F. Olness et al., Eur. Phys. J. C 40, 145 (2005)CrossRefADSGoogle Scholar
  26. 26.
    S. Kretzer et al., Phys. Rev. Lett. 93, 041802 (2004)CrossRefADSGoogle Scholar
  27. 27.
    Y. Ding, B.-Q. Ma, Phys. Lett. B 590, 216 (2004)CrossRefADSGoogle Scholar
  28. 28.
    J. Alwall, G. Ingelman, Phys. Rev. D 70, 111505(R) (2004)CrossRefADSGoogle Scholar
  29. 29.
    Y. Ding, R.-G. Xu, B.-Q. Ma, Phys. Lett. B 607, 101 (2005)CrossRefADSGoogle Scholar
  30. 30.
    Y. Ding, R.-G. Xu, B.-Q. Ma, Phys. Rev. D 71, 094014 (2005)CrossRefADSGoogle Scholar
  31. 31.
    M. Wakamatsu, Phys. Rev. D 71, 057504 (2005)CrossRefADSGoogle Scholar
  32. 32.
    CCFR Collaboration, A.O. Bazarko et al., Z. Phys. C 65, 189 (1995)CrossRefGoogle Scholar
  33. 33.
    NuTeV Collaboration, D. Mason, hep-ex/0405037Google Scholar
  34. 34.
    P. Gao, B.-Q. Ma, Eur. Phys. J. C 44, 63 (2005)CrossRefADSGoogle Scholar
  35. 35.
    V.G. Kartvelishvili, A.K. Likehoded, V.A. Petrov, Phys. Lett. B 78, 615 (1978)CrossRefADSGoogle Scholar
  36. 36.
    J. Pumplin, et al., J. High Energ. Phys. 07, 012 (2002)CrossRefADSGoogle Scholar
  37. 37.
    M. Glück, E. Reya, I. Schienbein, Eur. Phys. J. C 10, 313 (1999)CrossRefADSGoogle Scholar
  38. 38.
    L.M. Jones, H.W. Wyld, Phys. Rev. D 17, 1782 (1978)CrossRefADSGoogle Scholar
  39. 39.
    J. Babcock, D. Sivers, S. Wolfram, Phys. Rev. D 18, 162 (1978)CrossRefADSGoogle Scholar
  40. 40.
    J.F. Owens, E. Reya, M. Glück, Phys. Rev. D 18, 1501 (1978)CrossRefADSGoogle Scholar
  41. 41.
    C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)CrossRefADSGoogle Scholar
  42. 42.
    G. De Lellis, P. Migliozzi, P. Santorelli, Phys. Rep. 399, 227 (2004)CrossRefADSGoogle Scholar
  43. 43.
    L. Gladilin, hep-ex/9912064Google Scholar
  44. 44.
    Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of PhysicsPeking UniversityBeijingP.R. China
  2. 2.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  3. 3.CCAST (World Laboratory)BeijingP.R. China

Personalised recommendations