Advertisement

The European Physical Journal C

, Volume 50, Issue 3, pp 683–689 | Cite as

The geometrical form for the string space-time action

  • D.S. Popović
  • B. SazdovićEmail author
Regular Article - Theoretical Physics

Abstract

In the present article, we derive the space-time action of the bosonic string in terms of geometrical quantities. First, we study the space-time geometry felt by a probe bosonic string moving in antisymmetric and dilaton background fields. We show that the presence of the antisymmetric field leads to space-time torsion, and the presence of the dilaton field leads to space-time non-metricity. Using these results we obtain the integration measure for space-time with stringy non-metricity, requiring its preservation under parallel transport. We derive the Lagrangian depending on stringy curvature, torsion and non-metricity.

Keywords

Covariant Derivative Integration Measure Geometrical Form Parallel Transport Antisymmetric Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blagojević, Gravitation and gauge symmetries (IoP Publishing, Bristol, 2002)Google Scholar
  2. 2.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Phys. Rep. 258, 1 (1995)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C.G. Callan, D. Friedan, E.J. Martinec, M.J. Perry, Nucl. Phys. B 262, 593 (1985)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 158, 316 (1985)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B 261, 1 (1985)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    T. Banks, D. Nemeschansky, A. Sen, Nucl. Phys. B 277, 67 (1986)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    C.G. Callan, I.R. Klebanov, M.J. Perry, Nucl. Phys. B 278, 78 (1986)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    T. Dereli, R.W. Tucker, Class. Quantum Grav. 4, 791 (1987)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    T. Dereli, R.W. Tucker, Class. Quantum Grav. 11, 2575 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    T. Dereli, R.W. Tucker, Class. Quantum Grav. 12, L31 (1995)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    H. Cebeci, T. Dereli, Phys. Rev. D 71, 024016 (2005)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Saa, Class. Quantum Grav. 12, L85 (1995)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. Scherk, J.H. Schwarz, Phys. Lett. B 52, 347 (1974)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. Scherk, J.H. Schwarz, Nucl. Phys. B 81, 118 (1974)CrossRefADSGoogle Scholar
  15. 15.
    E. Braaten, T.L. Curtright, C.K. Zachos, Nucl. Phys. B 260, 630 (1985)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    B. Sazdović, IJMP A 20, 5501 (2005) [hep-th/0304086]ADSGoogle Scholar
  17. 17.
    A. Saa, J. Geom. Phys. 15, 102 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)zbMATHGoogle Scholar
  19. 19.
    J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)Google Scholar
  20. 20.
    T.L. Curtright, C.K. Zachos, Phys. Rev. Lett. 53, 1799 (1984)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    S. Mukhi, Phys. Lett. B 162, 345 (1985)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    A.A. Tseytlin, Int. J. Mod. Phys. A 4, 1257 (1989)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of PhysicsBelgradeSerbia

Personalised recommendations