Advertisement

The European Physical Journal C

, Volume 50, Issue 3, pp 673–678 | Cite as

Chiral oscillations in terms of the zitterbewegung effect

  • A.E. BernardiniEmail author
Regular Article - Theoretical Physics

Abstract

We seek the immediate description of chiral oscillations in terms of the trembling motion described by the velocity (Dirac) operator α. By taking into account the complete set of Dirac equation solutions, which results in a free propagating Dirac wave packet composed by positive and negative frequency components, we report about the well-established zitterbewegung results and indicate how chiral oscillations can be expressed in terms of the well-known quantum oscillating variables. We conclude with the interpretation of chiral oscillations as very rapid position oscillation projections onto the longitudinally decomposed direction of the motion.

Keywords

Wave Packet Dirac Equation Oscillation Probability Spin Angular Momentum Plane Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.M. Dirac, Proc. R. Soc. A 117, 610 (1928)ADSGoogle Scholar
  2. 2.
    P.A.M. Dirac, Proc. R. Soc. A 126, 360 (1930)ADSGoogle Scholar
  3. 3.
    O. Klein, Z. Phys. 53, 157 (1929)CrossRefADSGoogle Scholar
  4. 4.
    E. Schroedinger, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys. Math. 28, 418 (1930)Google Scholar
  5. 5.
    C. Itzykson, J.B. Zuber, Quantum Field Theory (Mc Graw-Hill Inc., New York, 1980)Google Scholar
  6. 6.
    J.W. Braun, Q. Su, R. Grobe, Phys. Rev. A 59, 604 (1999)CrossRefADSGoogle Scholar
  7. 7.
    S. Rupp, T. Sigg, M. Sorg, Int. J. Theor. Phys. 39, 1543 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    B. Thaller, quant-ph/0409079Google Scholar
  9. 9.
    J. Bolte, R. Glaser, J. Phys. A Math. Gen. 37, 6359 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A.E. Bernardini, S. De Leo, Eur. Phys. J. C 37, 471 (2004)CrossRefADSGoogle Scholar
  11. 11.
    S. De Leo, P. Rotelli, Int. J. Theor. Phys. 37, 2193 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    A.E. Bernardini, S. De Leo, Mod. Phys. Lett. A 20, 681 (2005)zbMATHCrossRefADSGoogle Scholar
  13. 13.
    J.J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley Publishing Company, New York, 1987)Google Scholar
  14. 14.
    S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, New York, 1995)Google Scholar
  15. 15.
    A.E. Bernardini, S. De Leo, Phys. Rev. D 71, 076008 (2005)CrossRefADSGoogle Scholar
  16. 16.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Publishing Company, New York, 1995)Google Scholar
  17. 17.
    A.O. Barut, A.J. Bracken, Phys. Rev. D 23, 2454 (1981)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    M. Rivas, Kinematical theory of spinning particles, Fundamental Theories of Physics – Vol. 116 (Springer, Berlin, 2002)Google Scholar
  19. 19.
    C.W. Kim, A. Pevsner, Neutrinos in Physics and Astrophysics (Harwood Academic Publishers, Chur, 1993)Google Scholar
  20. 20.
    L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)CrossRefADSGoogle Scholar
  21. 21.
    L. Wolfenstein, Phys. Rev. D 20, 2634 (1979)CrossRefADSGoogle Scholar
  22. 22.
    S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1986)Google Scholar
  23. 23.
    L. Wolfenstein, Nuovo Cim. C 9, 17 (1986)CrossRefGoogle Scholar
  24. 24.
    A. Ayala, J.C. D’Olivo, M. Torres, Phys. Rev. D 59, 111901 (1999)CrossRefADSGoogle Scholar
  25. 25.
    J.C. D’Olivo, J.F. Nieves, Phys. Lett. B 383, 87 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Instituto de Física Gleb WataghinUNICAMPCampinasBrasil

Personalised recommendations