Advertisement

The European Physical Journal C

, Volume 50, Issue 3, pp 679–682 | Cite as

Gravitational scattering in the ADD model revisited

  • M. Sjödahl
Regular Article - Theoretical Physics

Abstract

It is argued that the assumption that the standard model particles live on a finite brane in the ADD model does in itself imply a finite propagator for virtual Kaluza–Klein mode exchange. The part of the propagator relevant for large distance scattering is cut-off-independent for scattering at distances large compared to the brane width. The matrix element corresponding to this part can also, at least for an odd number of extra dimensions, be Fourier transformed to position space, giving back the extra-dimensional version of Newton’s law. For an even number of extra dimensions a corresponding result is found by requiring that Newton’s law should be recovered.

Keywords

Extra Dimension Momentum Space Classical Limit Position Space Standard Model Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998) [hep-ph/9803315]CrossRefADSGoogle Scholar
  2. 2.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Rev. D 59, 086004 (1999) [hep-ph/9807344]CrossRefADSGoogle Scholar
  3. 3.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 436, 257 (1998) [hep-ph/9804398]CrossRefADSGoogle Scholar
  4. 4.
    T. Han, J.D. Lykken, R.-J. Zhang, Phys. Rev. D 59, 105006 (1999) [hep-ph/9811350]CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 544, 3 (1999) [hep-ph/9811291]CrossRefADSGoogle Scholar
  6. 6.
    M. Bando, T. Kugo, T. Noguchi, K. Yoshioka, Phys. Rev. Lett. 83, 3601 (1999) [hep-ph/9906549]zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    T. Kugo, K. Yoshioka, Nucl. Phys. B 594, 301 (2001) [hep-ph/9912496]zbMATHCrossRefADSGoogle Scholar
  8. 8.
    G.F. Giudice, A. Strumia, Nucl. Phys. B 663, 377 (2003) [hep-ph/0301232]zbMATHCrossRefADSGoogle Scholar
  9. 9.
    D. Atwood, S. Bar-Shalom, A. Soni, Phys. Rev. D 62, 056008 (2000) [hep-ph/9911231]CrossRefADSGoogle Scholar
  10. 10.
    G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B 630, 293 (2002) [hep-ph/0112161]zbMATHCrossRefADSGoogle Scholar
  11. 11.
    I.M. Gradshteyn, I. Ryshik, Table of Integrals, Series, and Products (Academic Press, USA, 1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Sjödahl
    • 1
  1. 1.Department of Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations