Advertisement

The European Physical Journal C

, Volume 49, Issue 4, pp 1091–1098 | Cite as

Path integral for one-dimensional Dirac oscillator

  • R. Rekioua
  • T. BoudjedaaEmail author
Regular Article - Theoretical Physics

Abstract

In this paper we derive the propagator for the one-dimensional Dirac oscillator using the supersymmetric path integral formalism. The spin calculations are carried out with the help of the technique of Grassmann functional integration. The Green function is exactly evaluated. The Polyakov spin factor is explicitly derived and the energy spectrum and the corresponding wave functions are deduced.

Keywords

Green Function Proper Time Orbit Coupling Path Integral Formalism Feynman Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.S. Fradkin, Nucl. Phys. 76, 588 (1966)CrossRefMathSciNetGoogle Scholar
  2. 2.
    F.A. Berezin, M.S. Marinov, JETP Lett. 21, 320 (1975)ADSGoogle Scholar
  3. 3.
    F.A. Berezin, M.S. Marinov, Ann. Phys. 104, 336 (1977)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    E.S. Fradkin, D.M. Gitman, Phys. Rev. D 44, 3230 (1991)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    D.M. Gitman, S.I. Zlatev, W.D. Cruz, Brazil. J. Phys. 26, 419 (1996)ADSGoogle Scholar
  6. 6.
    D.M. Gitman, S.I. Zlatev, Phys. Rev. D 55, 7701 (1997)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Zeggari, T. Boudjedaa, L. Chetouani, Czech. J. Phys. 51, 185 (2001)CrossRefADSGoogle Scholar
  8. 8.
    S. Zeggari, T. Boudjedaa, L. Chetouani, Phys. Scripta 64, 285 (2001)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    N. Boudiaf, T. Boudjedaa, L. Chetouani, Eur. Phys. J. 20, 585 (2001)ADSGoogle Scholar
  10. 10.
    N. Boudiaf, T. Boudjedaa, L. Chetouani, Eur. Phys. J. 22, 593 (2001)zbMATHCrossRefADSGoogle Scholar
  11. 11.
    T. Boudjedaa, L. Chetouani, J. Phys. A 35, 1651 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Moshinsky, A. Szczepaniak, J. Phys. A 22, L817 (1989)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. Moshinsky, Y. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood Academic Publishers, The Netherlands, 1996)zbMATHGoogle Scholar
  14. 14.
    P. Rozmej, R. Arvieu, J. Phys. A 32, 5367 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    D.M. Gitman, A.V. Saa, Mod. Phys. Lett. A 8, 463 (1993)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    C. Alexandrou, R. Rosenfelder, A.W. Schreiber, Phys. Rev. A 59, 1762 (1999)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    D.M. Gitman, S.I. Zlatev, Phys. Rev. D 55, 7701 (1997)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981)zbMATHGoogle Scholar
  19. 19.
    W.J. Cruz, J. Phys. A 30, 5225 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    C. Grosche, F. Steiner, Handbook of Feynman Path Integrals, Springer Tracts in Modern Physics, vol. 145 (Springer, Berlin, Heidelberg, 1998)Google Scholar
  21. 21.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1979)Google Scholar
  22. 22.
    R. Szmytkowski, M. Gruchowski, J. Phys. A 34, 4991 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique, Faculté des SciencesUniversité de JijelJijelAlgeria

Personalised recommendations