Advertisement

The European Physical Journal C

, Volume 49, Issue 3, pp 815–829 | Cite as

Tachyonic cascade spectra of supernova remnants and TeV blazars

  • R. TomaschitzEmail author
Regular Article - Theoretical Physics

Abstract

The superluminal spectral densities of relativistic electrons in uniform motion are derived, semiclassically and in second quantization. The effect of electron spin on the tachyonic radiation field, a Proca field with negative mass-square, is studied. There is a longitudinally polarized spectral component due to the negative mass-square of the tachyonic quanta. The radiation densities are averaged with electron distributions, and high- and low-temperature expansions are obtained. Spectral fits to the γ-ray spectra of the Crab Nebula, the supernova remnant RX J1713.7–3946, and the BL Lacertae objects H1426+428, 1ES 1959+650, Mkn 501, and Mkn 421 are performed. In contrast to TeV photons, the extragalactic tachyon flux is not attenuated by interaction with the background light; there is no absorption of tachyonic γ-rays, as tachyons do not interact with infrared photons. The curvature of the TeV spectra in double-logarithmic plots is caused by the Boltzmann factor of the electron densities generating the tachyon flux. The extended spectral plateau in the GeV band, visible in the spectral maps of the two Galactic supernova remnants as well as in the flare spectra of the BL Lacertae objects, is reproduced by the tachyonic radiation densities. Estimates of the electron populations in the supernova remnants and active galactic nuclei are inferred from the spectral fits, such as power-law indices, electron temperatures, and source counts. Upper bounds on the Lorentz factors in the source populations are derived and compared to the breaks in the high-energy cosmic-ray spectrum.

Keywords

Supernova Remnant Lorentz Factor Crab Nebula Tachyon Mass Dirac Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Tomaschitz, Eur. Phys. J. B 17, 523 (2000)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    R. Tomaschitz, Physica A 320, 329 (2003)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)CrossRefADSGoogle Scholar
  4. 4.
    R. Tomaschitz, Class. Quantum Grav. 18, 4395 (2001)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. Tomaschitz, Physica A 307, 375 (2002)CrossRefADSGoogle Scholar
  6. 6.
    R. Tomaschitz, Eur. Phys. J. C 45, 493 (2006)CrossRefADSGoogle Scholar
  7. 7.
    R. Tomaschitz, Eur. Phys. J. D 32, 241 (2005)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    N.M. Lloyd, V. Petrosian, Astrophys. J. 511, 550 (1999)CrossRefADSGoogle Scholar
  9. 9.
    N.M. Lloyd, V. Petrosian, R.S. Mallozzi, Astrophys. J. 534, 227 (2000)CrossRefADSGoogle Scholar
  10. 10.
    N.M. Lloyd-Ronning, V. Petrosian, Astrophys. J. 565, 182 (2002)CrossRefADSGoogle Scholar
  11. 11.
    V. Petrosian, Astrophys. J. 557, 560 (2001)CrossRefADSGoogle Scholar
  12. 12.
    R. Tomaschitz, Ann. Phys. (2007) DOI: 10.1016/j.aop.2006.11.005Google Scholar
  13. 13.
    R. Tomaschitz, Physica A 335, 577 (2004)CrossRefADSGoogle Scholar
  14. 14.
    R. Tomaschitz, Astropart. Phys. 23, 117 (2005)CrossRefADSGoogle Scholar
  15. 15.
    R. Tomaschitz, Astropart. Phys. (2007), DOI:10.1016/j.astropartphys.2006.09.003Google Scholar
  16. 16.
    R. Tomaschitz, Int. J. Theor. Phys. 44, 195 (2005)CrossRefGoogle Scholar
  17. 17.
    O.C. de Jager et al., Astrophys. J. 457, 253 (1996)CrossRefADSGoogle Scholar
  18. 18.
    M. Nagano, A.A. Watson, Rev. Mod. Phys. 72, 689 (2000)CrossRefADSGoogle Scholar
  19. 19.
    W.-M. Yao et al., J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Y. Fukui et al., Publ. Astro. Soc. Japan 55, L61 (2003)ADSMathSciNetGoogle Scholar
  21. 21.
    Y. Moriguchi et al., Astrophys. J. 631, 947 (2005)CrossRefADSGoogle Scholar
  22. 22.
    J.C. Ling, W.A. Wheaton, Astrophys. J. 598, 334 (2003)CrossRefADSGoogle Scholar
  23. 23.
    L. Kuiper et al., Astron. Astrophys. 378, 918 (2001)CrossRefADSGoogle Scholar
  24. 24.
    R. Much et al., Astron. Astrophys. Suppl. Ser. 120, 703 (1996)ADSGoogle Scholar
  25. 25.
    R.D. van der Meulen et al., Astron. Astrophys. 330, 321 (1998)ADSGoogle Scholar
  26. 26.
    R.C. Hartman et al., Astrophys. J. Suppl. 123, 79 (1999)CrossRefADSGoogle Scholar
  27. 27.
    M. de Naurois et al., Astrophys. J. 566, 343 (2002)CrossRefADSGoogle Scholar
  28. 28.
    S. Oser et al., Astrophys. J. 547, 949 (2001)CrossRefADSGoogle Scholar
  29. 29.
    F. Aharonian et al., Astrophys. J. 614, 897 (2004)CrossRefADSGoogle Scholar
  30. 30.
    F. Aharonian et al., Astron. Astrophys. 457, 899 (2006)CrossRefADSGoogle Scholar
  31. 31.
    O. Reimer, M. Pohl, Astron. Astrophys. 390, L43 (2002)CrossRefADSGoogle Scholar
  32. 32.
    R. Enomoto et al., Nature 416, 823 (2002)CrossRefADSGoogle Scholar
  33. 33.
    F.A. Aharonian et al., Nature 432, 75 (2004)CrossRefADSGoogle Scholar
  34. 34.
    F.A. Aharonian et al., Astron. Astrophys. 449, 223 (2006)CrossRefADSGoogle Scholar
  35. 35.
    A. Djannati-Atai et al., Astron. Astrophys. 391, L25 (2002)CrossRefADSGoogle Scholar
  36. 36.
    D. Petry et al., Astron. Astrophys. 580, 104 (2002)Google Scholar
  37. 37.
    F. Aharonian et al., Astron. Astrophys. 403, 523 (2003)CrossRefADSGoogle Scholar
  38. 38.
    M.K. Daniel et al., Astrophys. J. 621, 181 (2005)CrossRefADSGoogle Scholar
  39. 39.
    H. Krawczynski et al., Astrophys. J. 601, 151 (2004)CrossRefADSGoogle Scholar
  40. 40.
    F.A. Aharonian et al., Astron. Astrophys. 349, 11 (1999)ADSGoogle Scholar
  41. 41.
    F.A. Aharonian et al., Astron. Astrophys. 366, 62 (2001)CrossRefADSGoogle Scholar
  42. 42.
    F. Aharonian et al., Astron. Astrophys. 437, 95 (2005)CrossRefADSGoogle Scholar
  43. 43.
    K. Okumura et al., Astrophys. J. 579, L9 (2002)CrossRefADSGoogle Scholar
  44. 44.
    M. Amenomori et al., Astrophys. J. 598, 242 (2003)CrossRefADSGoogle Scholar
  45. 45.
    R. Tomaschitz, J. Phys. A 38, 2201 (2005)CrossRefADSGoogle Scholar
  46. 46.
    J.W. den Herder et al., Astron. Astrophys. 365, L7 (2001)CrossRefADSGoogle Scholar
  47. 47.
    C.R. Canizares et al., Publ. Astro. Soc. Pac. 117, 1144 (2005)CrossRefADSGoogle Scholar
  48. 48.
    F. Frontera et al., Astron. Astrophys. Suppl. Ser. 122, 357 (1997)CrossRefADSGoogle Scholar
  49. 49.
    R.E. Rothschild et al., Astrophys. J. 496, 538 (1998)CrossRefADSGoogle Scholar
  50. 50.
    K. Makishima et al., Publ. Astro. Soc. Japan 48, 171 (1996)ADSGoogle Scholar
  51. 51.
    G. Manzo et al., Astron. Astrophys. Suppl. Ser. 122, 341 (1997)CrossRefADSGoogle Scholar
  52. 52.
    W.N. Johnson et al., Astrophys. J. Suppl. 86, 693 (1993)CrossRefADSGoogle Scholar
  53. 53.
    V. Schönfelder et al., Astrophys. J. Suppl. 86, 657 (1993)CrossRefADSGoogle Scholar
  54. 54.
    D.J. Thompson et al., Astrophys. J. Suppl. 86, 629 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of PhysicsHiroshima University1-3-1 Kagami-yamaJapan

Personalised recommendations