Advertisement

The European Physical Journal C

, Volume 49, Issue 2, pp 623–640 | Cite as

Discovery potential of R-hadrons with the ATLAS detector

  • A.C. Kraan
  • J.B. HansenEmail author
  • P. Nevski
Special Article - Scientific Note

Abstract

The production of exotic heavy hadronic particles arises in several models for physics beyond the standard model. The focus is on R-hadrons, which are stable hadronized gluinos, predicted by certain supersymmetric models. Interactions and signatures of single R-hadrons are studied with the ATLAS simulation and reconstruction framework. The ATLAS fast simulation framework has been extended to include parameterizations for R-hadrons. Based on topological and kinematic variables only, the discovery potential of the ATLAS detector for R-hadron events produced in \(pp\to\tilde{g}\tilde{g}\), is studied for masses below 2 TeV/c2. R-hadrons with masses as predicted by standard SUSY scenarios would be discovered already in the very early stages of the running of the LHC. The discovery reach of heavy gluinos, predicted by for example split supersymmetry models, extends up to at least 1.8 TeV/c2 for three years running of the LHC at low luminosity.

Keywords

Transverse Momentum Energy Deposit Atlas Collaboration Atlas Detector Discovery Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Baer, K. Cheung, J.F. Gunion, Phys. Rev. D 59, 075002 (1999) and references thereinCrossRefADSGoogle Scholar
  2. 2.
    N. Arkani-Hamed, S. Dimopoulos, JHEP 0506, 073 (2005) [hep-th/0405159]CrossRefADSGoogle Scholar
  3. 3.
    G.F. Giudice, A. Romanino, Nucl. Phys. B 709, 3 (2005) [hep-ph/0406088]CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    G.R. Farrar, P. Fayet, Phys. Lett. B 76, 575 (1978)CrossRefADSGoogle Scholar
  5. 5.
    A.C. Kraan, Eur. Phys. J. C 37, 91 (2004)CrossRefADSGoogle Scholar
  6. 6.
    W. Kilian, T. Plehn, P. Richardson, E. Schmidt, Eur. Phys. J. C 39, 229 (2005) [hep-ph/0408088]CrossRefADSGoogle Scholar
  7. 7.
    J.L. Hewett, B. Lillie, M. Masip, T.G. Rizzo, JHEP 0409, 070 (2004) [hep-ph/0408248]CrossRefADSGoogle Scholar
  8. 8.
    A. Mafi, S. Raby, Phys. Rev. D 62, 035003 (2000)CrossRefADSGoogle Scholar
  9. 9.
    S. Raby, K. Tobe, Nucl. Phys. B 539, 3 (1999)CrossRefADSGoogle Scholar
  10. 10.
    C. Friberg, E. Norrbin, T. Sjöstrand, Phys. Lett. B 403, 329 (1997)CrossRefADSGoogle Scholar
  11. 11.
    T. Appelquist, H. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001)CrossRefADSGoogle Scholar
  12. 12.
    P.H. Frampton, P.Q. Hung, P. Quang, Phys. Rev. D 58, 057704 (1998)CrossRefADSGoogle Scholar
  13. 13.
    H. Fritzsch, Phys. Lett. B 78, 611 (1978)CrossRefADSGoogle Scholar
  14. 14.
    P. Fishbane, S. Meshkov, P. Ramond, Phys. Lett. B 134, 81 (1984)CrossRefADSGoogle Scholar
  15. 15.
    G. Ingelman, C. Wetterich, Phys. Lett. B 174, 109 (1986)CrossRefADSGoogle Scholar
  16. 16.
    K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)CrossRefADSGoogle Scholar
  17. 17.
    M.L. Perl et al, Int. J. Mod. Phys. A 16, 2137 (2001)CrossRefADSGoogle Scholar
  18. 18.
    A. Nisati, S. Petrarca, G. Salvini, Mod. Phys. Lett. A 12, 2213 (1997)CrossRefADSGoogle Scholar
  19. 19.
    A. Nisati, ATLAS note, ATL-DAQ-98-083 (1998)Google Scholar
  20. 20.
    G. Polesello, A. Rimoldi, ATLAS note, ATL-MUON-99-006 (1999)Google Scholar
  21. 21.
    S. Ambrosanio, B. Mele, A. Nisati, S. Petrarca, G. Polesello, A. Rimoldi, G. Salvini, Rend. Fis. Accad. Lincei 12, 5 (2001) [hep-ph/0012192]CrossRefGoogle Scholar
  22. 22.
    A.C. Kraan, Doctoral Thesis (Copenhagen, 2004), available at: http://www.nbi.dk/˜ackraanGoogle Scholar
  23. 23.
    M. Chanowitz, S. Sharpe, Phys. Lett. B 126, 225 (1983)CrossRefADSGoogle Scholar
  24. 24.
    F. Buccella, G.R. Farrar, A. Pugliese, Phys. Lett. B 153, 311 (1985)CrossRefADSGoogle Scholar
  25. 25.
    M. Foster, C. Michael, Phys. Rev. D 59, 094509 (1999)CrossRefADSGoogle Scholar
  26. 26.
    T. Sjöstrand, private communication, see alsohttp://www.thep.lu.se/˜torbjorn/Pythia.htmlGoogle Scholar
  27. 27.
    GEANT Detector Description and Simulation Tool (manual), CERN (Geneva, 1993)Google Scholar
  28. 28.
    ATLAS Collaboration, ATLAS Detector and Physics Performance Technical Design Report, Vol. 1, CERN-LHCC-99-14 (1999)Google Scholar
  29. 29.
    ATLAS Collaboration, ATLAS Level-1 Trigger Technical Design Report, CERN-LHCC-1998-14 (1998)Google Scholar
  30. 30.
    ATLAS Collaboration, ATLAS High-Level Trigger, Data Acquisition and Controls, Technical Design Report, CERN-LHCC-2003-022 (2003)Google Scholar
  31. 31.
    ATLAS Collaboration, ATLAS Inner Detector Technical Design Report, CERN-LHCC-97-16 (1997)Google Scholar
  32. 32.
    ATLAS Collaboration, ATLAS Muon Spectrometer Technical Design Report, CERN-LHCC-97-22 (1997)Google Scholar
  33. 33.
    C. Driouichi, Doctoral Thesis (Lund, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  2. 2.Brookhaven National LaboratoryUptonUSA

Personalised recommendations