Advertisement

The European Physical Journal C

, Volume 49, Issue 2, pp 489–497 | Cite as

Measurement of the top-Higgs Yukawa coupling at a linear e+e- collider

Regular Article - Experimental Physics

Abstract

Understanding the mechanism of electroweak symmetry breaking and the origin of boson and fermion masses is among the most pressing questions raised in contemporary particle physics. If these issues involve one (several) Higgs boson(s), a precise measurement of all its (their) properties will be of prime importance. Among those, the Higgs coupling to matter fermions (the Yukawa coupling). At a linear collider, the process e+e-→tt̄H will allow a direct measurement of the top-Higgs Yukawa coupling. We present a realistic feasibility study of the measurement in the context of the TESLA collider. Four channels are studied and the analysis is repeated for several Higgs mass values within the range 120–200 GeV/c 2.

Keywords

Higgs Boson Invariant Mass Yukawa Coupling Higgs Mass Charged Lepton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ALEPH, DELPHI, L3 and OPAL Collaborations, LEP Working Group for Higgs Boson Searches, Phys. Lett. B 565, 61 (2003)CrossRefADSGoogle Scholar
  2. 2.
    LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/Google Scholar
  3. 3.
    H. Baer, S. Dawson, L. Reina, Phys. Rev. D 61, 013002 (2000)CrossRefADSGoogle Scholar
  4. 4.
    A. Juste, G. Merino, hep-ph/9910301Google Scholar
  5. 5.
    A. Gay, Ph.D. thesis (Université Louis Pasteur Strasbourg, 2005)Google Scholar
  6. 6.
    A. Gay, LC-PHSM-2006-002, hep-ph/0604034Google Scholar
  7. 7.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998)CrossRefADSGoogle Scholar
  8. 8.
    A. Pukhov et al., hep-ph/9908288Google Scholar
  9. 9.
    A. Juste, hep-ph/0512246Google Scholar
  10. 10.
    S. Dittmaier, M. Kramer, Y. Liao, M. Spira, P. Zerwas, Phys. Lett. B 441, 383 (1998)CrossRefADSGoogle Scholar
  11. 11.
    S. Dawson, L. Reina, Phys. Rev. D 59, 054012 (1999)CrossRefADSGoogle Scholar
  12. 12.
    G. Bélanger et al., hep-ph/0307029Google Scholar
  13. 13.
    C. Farrell, A. Hoang, Phys. Rev. D 72, 014007 (2005)CrossRefADSGoogle Scholar
  14. 14.
    T. Sjostrand, L. Lonnblad, S. Mrenna, hep-ph/0108264Google Scholar
  15. 15.
    T. Ohl, Comput. Phys. Commun. 101, 269 (1997)CrossRefADSGoogle Scholar
  16. 16.
    M. Pohl, H.J. Schreiber, DESY 02-061, LC-DET-2002-005Google Scholar
  17. 17.
    TESLA Technical Design Report, DESY 2001-011, ECFA 2001-209, 2001Google Scholar
  18. 18.
    R. Hawkings, LC-PHSM-2000-021Google Scholar
  19. 19.
    S.M. Xella Hansen, D.J. Jackson, R. Hawkings, C. Damerell, LC-PHSM-2001-024Google Scholar
  20. 20.
    http://flc25.desy.de/flc/science/analysis_ntuple/index.htmlGoogle Scholar
  21. 21.
    http://schwind.home.cern.ch/schwind/MLPfit.htmlGoogle Scholar
  22. 22.
    W. Kilian, LC-TOOL-2001-039Google Scholar
  23. 23.
    M. Dührssen et al., hep-ph/0406323.Google Scholar
  24. 24.
    K. Desch, M. Schumacher, Eur. Phys. J. C 46, 527 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Institut Pluridisciplinaire Hubert CurienStrasbourgFrance

Personalised recommendations