Advertisement

The European Physical Journal C

, Volume 49, Issue 1, pp 87–90 | Cite as

Anisotropic flow from RHIC to the LHC

  • R. SnellingsEmail author
Regular Article – Experimental Physics

Abstract

Anisotropic flow is recognized as one of the main observables providing information on the early stage of a heavy-ion collision. At RHIC the large observed anisotropic flow and its successful description by ideal hydrodynamics is considered evidence for an early onset of thermalization and almost ideal fluid properties of the produced strongly coupled quark gluon plasma. This write-up discusses some key RHIC anisotropic flow measurements and for anisotropic flow at the LHC some predictions.

Keywords

Large Hadron Collider Transverse Momentum Star Collaboration Hadronic Phase Large Hadron Collider Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992)CrossRefADSGoogle Scholar
  2. 2.
    P. Danielewicz, Nucl. Phys. A 661, 82 (1999)CrossRefADSGoogle Scholar
  3. 3.
    D.H. Rischke, Nucl. Phys. A 610, 88C (1996)CrossRefADSGoogle Scholar
  4. 4.
    J.Y. Ollitrault, Nucl. Phys. A 638, 195 (1998)CrossRefADSGoogle Scholar
  5. 5.
    S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)CrossRefGoogle Scholar
  6. 6.
    STAR Collaboration, K.H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001)CrossRefADSGoogle Scholar
  7. 7.
    BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A 757, 1 (2005)CrossRefADSGoogle Scholar
  8. 8.
    PHOBOS Collaboration, B.B. Back et al., Nucl. Phys. A 757, 28 (2005)CrossRefADSGoogle Scholar
  9. 9.
    STAR Collaboration, J. Adams et al., Nucl. Phys. A 757, 102 (2005)CrossRefADSGoogle Scholar
  10. 10.
    PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A 757, 184 (2005)CrossRefADSGoogle Scholar
  11. 11.
    T.D. Lee et al., Nucl. Phys. A 750, 1 (2005)CrossRefADSGoogle Scholar
  12. 12.
    STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 87, 182301 (2001)CrossRefADSGoogle Scholar
  13. 13.
    N. Borghini, P.M. Dinh, J.Y. Ollitrault, arXiv:hep-ph/011 1402Google Scholar
  14. 14.
    J.P. Blaizot, Nucl. Phys. A 698, 360 (2002)CrossRefGoogle Scholar
  15. 15.
    D. Teaney, J. Lauret, E.V. Shuryak, arXiv:nucl-th/0110037Google Scholar
  16. 16.
    D. Teaney, J. Lauret, E.V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001)CrossRefADSGoogle Scholar
  17. 17.
    T. Hirano, M. Gyulassy, Nucl. Phys. A 769, 71 (2006)CrossRefADSGoogle Scholar
  18. 18.
    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, arXiv:nucl-th/0511046Google Scholar
  19. 19.
    P. Huovinen, Nucl. Phys. A 761, 296 (2005)CrossRefADSGoogle Scholar
  20. 20.
    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001)CrossRefADSGoogle Scholar
  21. 21.
    STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 052302 (2004)CrossRefADSGoogle Scholar
  22. 22.
    S.A. Voloshin, Nucl. Phys. A 715, 379 (2003)CrossRefADSGoogle Scholar
  23. 23.
    D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003)CrossRefADSGoogle Scholar
  24. 24.
    T. Hirano, Talk given at the Workshop on QGP Thermalization (QGPTH05), Vienna, Private communicationGoogle Scholar
  25. 25.
    P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Rev. C 62, 054909 (2000)CrossRefADSGoogle Scholar
  26. 26.
    D. Teaney, Phys. Rev. C 68, 034913 (2003)CrossRefADSGoogle Scholar
  27. 27.
    L.P. Csernai, J.I. Kapusta, L.D. McLerran, arXiv:nucl-th/0604032Google Scholar
  28. 28.
    U.W. Heinz, arXiv:nucl-th/0512049Google Scholar
  29. 29.
    M. Miller, R. Snellings, arXiv:nucl-ex/0312008Google Scholar
  30. 30.
    S.A. Voloshin, arXiv:nucl-th/0606022Google Scholar
  31. 31.
    R.S. Bhalerao, J.Y. Ollitrault, arXiv:nucl-th/0607009Google Scholar
  32. 32.
    PHOBOS Collaboration, B. Alver, arXiv:nucl-ex/0608025Google Scholar
  33. 33.
    P.F. Kolb, J. Sollfrank, U.W. Heinz, Phys. Lett. B 459, 667 (1999)CrossRefADSGoogle Scholar
  34. 34.
    D. Teaney, E.V. Shuryak, Phys. Rev. Lett. 83, 4951 (1999)CrossRefADSGoogle Scholar
  35. 35.
    P.F. Kolb, Phys. Rev. C 68, 031902 (2003)CrossRefADSGoogle Scholar
  36. 36.
    N. Borghini, J.Y. Ollitrault, arXiv:nucl-th/0506045Google Scholar
  37. 37.
    R.S. Bhalerao et al., Phys. Lett. B 627, 49 (2005)CrossRefADSGoogle Scholar
  38. 38.
    N. Borghini, P.M. Dinh, J.Y. Ollitrault, Phys. Rev. C 64, 054901 (2001)CrossRefADSGoogle Scholar
  39. 39.
    STAR Collaboration, J. Adams et al., Phys. Rev. Lett. 92, 062301 (2004)CrossRefADSGoogle Scholar
  40. 40.
    STAR Collaboration, A.H. Tang, arXiv:nucl-ex/0608026Google Scholar
  41. 41.
    Y. Bai, 2006 RHIC & AGS Annual Users’ Meeting, http://www.bnl.gov/rhic_ags/users_meeting/Workshops/8.aspGoogle Scholar
  42. 42.
    The ALICE collaboration, PPR Vol I: J. Phys. G 30 (2004) 1517, PPR Vol II: CERN/LHCC 2005-030Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.NIKHEFAmsterdamThe Netherlands

Personalised recommendations