Advertisement

The European Physical Journal C

, Volume 49, Issue 2, pp 593–597 | Cite as

The correction of the littlest Higgs model to the Higgs production process e+e-→e+e-H at the ILC

  • Xuelei WangEmail author
  • Yaobei Liu
  • Jihong Chen
  • Hua Yang
Theoretical Physics

Abstract

The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs model, we study the process e+e-→e+e-H at the ILC and calculate the correction of the littlest Higgs model to the cross section of this process. The results show that, in the favorable parameter spaces preferred by the electroweak precision data, the value of the relative correction is in the range from a few percent to tens percent. In most cases, the correction is large enough to reach the measurement precision of the ILC. Therefore, the correction of the littlest Higgs model to the process e+e-→e+e-H might be detected at the ILC, which will give an ideal way to test the model.

Keywords

Higgs Boson Gauge Boson Relative Correction Goldstone Boson Higgs Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Dimopoulos, H. Georgi, Nucl. Phys. B 193, 150 (1981)CrossRefADSGoogle Scholar
  2. 2.
    H.P. Nilles, Phys. Rep. 110, 1 (1984)CrossRefADSGoogle Scholar
  3. 3.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)CrossRefADSGoogle Scholar
  4. 4.
    S.P. Martin, hep-ph/9709356Google Scholar
  5. 5.
    P. Fayet, Nucl. Phys. B 101, 81 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    For a recent review, see C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003)CrossRefADSGoogle Scholar
  7. 7.
    I. Antoniadis, C. Munoz, M. Quiros, Nucl. Phys. B 397, 515 (1999)CrossRefADSGoogle Scholar
  8. 8.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Rev. D 59, 086004 (1999)CrossRefADSGoogle Scholar
  9. 9.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Rev. D 83, 4690 (1999)Google Scholar
  10. 10.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire, J.G. Wacker, JHEP 0208, 020 (2002)ADSMathSciNetGoogle Scholar
  12. 12.
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire, J.G. Wacker, JHEP 0208, 021 (2002)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    I. Low, W. Skiba, D. Smith, Phys. Rev. D 66, 072001 (2002)CrossRefADSGoogle Scholar
  14. 14.
    M. Schmaltz, Nucl. Phys. Proc. Suppl. 117, 40 (2003)CrossRefADSGoogle Scholar
  15. 15.
    W. Skiba, J. Terning, Phys. Rev. D 68, 075001 (2003)CrossRefADSGoogle Scholar
  16. 16.
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, JHEP 0207, 034 (2002)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    M.W. Grunewald, in Proceedings of the Workingshop on Electroweak Precision Data and the Higgs Mass, hep-ex/0304023Google Scholar
  18. 18.
    The LEP collaborattions, the LEP Electroweak Working Group and the SLD Heavy Flavour Group, hep-ex/0412015Google Scholar
  19. 19.
    J. Conway, K. Desch, J.F. Gunion, S. Mrenna, D. Zeppenfeld, for the Precision Higgs Working Group, hep-ph/0203206Google Scholar
  20. 20.
    American Linear Collider Group, T. Abe et al., hep-ex/0106057Google Scholar
  21. 21.
    ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., hep-ph/0106315Google Scholar
  22. 22.
    ACFA Linear Collider Working Group, K. Abe et al., hep-ph/0109166Google Scholar
  23. 23.
    G. Laow et al., ILC Techinical Review Committee, second report, 2003, SLAC-R-606Google Scholar
  24. 24.
    M.W. Grunewald, hep-ex/0210003Google Scholar
  25. 25.
    G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, Y. Shimizu, Phys. Lett. B 559, 252 (2003)CrossRefADSGoogle Scholar
  26. 26.
    G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, Y. Shimizu, Nucl. Phys. Proc. Suppl. 116, 353 (2003)CrossRefADSGoogle Scholar
  27. 27.
    A. Denner, S. Dittmaier, M. Roth, M.M. Weber, Nucl. Phys. B 660, 289 (2003)CrossRefADSGoogle Scholar
  28. 28.
    A. Denner, S. Dittmaier, M. Roth, M.M. Weber, Phys. Lett. B 560, 196 (2003)CrossRefADSGoogle Scholar
  29. 29.
    B.A. Kniehl, Int. J. Mod. Phys. A 17, 1457 (2002)CrossRefADSGoogle Scholar
  30. 30.
    M. Carena, H.E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003)CrossRefADSGoogle Scholar
  31. 31.
    C.X. Yue, S.Z. Wang, D.Q. Yu, Phys. Rev. D 68, 115004 (2003)CrossRefADSGoogle Scholar
  32. 32.
    C.X. Yue, W. Wang, Z.J. Zong, F. Zhang, Eur. Phys. J. C 42, 331 (2005)CrossRefADSGoogle Scholar
  33. 33.
    F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, Y. Kurihara, Y. Shimizu, Y. Yasui, Phys. Lett. B 600, 65 (2004)CrossRefADSGoogle Scholar
  34. 34.
    F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, Y. Kurihara, Y. Shimizu, S. Yamashita, Y. Yasui, Nucl. Instrum. Methods A 534, 334 (2004)CrossRefADSGoogle Scholar
  35. 35.
    T. Han, H.E. Logan, B. McElrath, L.T. Wang, Phys. Rev. D 67, 095004 (2003)CrossRefADSGoogle Scholar
  36. 36.
    G. Burdman, M. Perelstein, A. Pierce, Phys. Rev. Lett. 90, 241802 (2003)CrossRefADSGoogle Scholar
  37. 37.
    T. Han, H.E. Logen, B. McElrath, L.T. Wang, Phys. Lett. B 563, 191 (2003)CrossRefADSGoogle Scholar
  38. 38.
    G. Azuelos et al., hep-ph/0402037Google Scholar
  39. 39.
    H.E. Logan, Phys. Rev. D 70, 115003 (2004)CrossRefADSGoogle Scholar
  40. 40.
    G. Cho, A. Omete, Phys. Rev. D 70, 057701 (2004)CrossRefADSGoogle Scholar
  41. 41.
    S.C. Park, J. Song, Phys. Rev. D 69, 115010 (2004)CrossRefADSGoogle Scholar
  42. 42.
    C.X. Yue, W. Wei, F. Zhang, Nucl. Phys. B 716, 199 (2005)CrossRefADSzbMATHGoogle Scholar
  43. 43.
    K. Hagiwara, D. Zeppenfeld, Nucl. Phys. B 313, 560 (1989)CrossRefADSGoogle Scholar
  44. 44.
    V. Barger, T. Han, D. Zeppenfeld, Phys. Rev. D 41, 2782 (1990)CrossRefADSGoogle Scholar
  45. 45.
    Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000)Google Scholar
  46. 46.
    Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)CrossRefADSGoogle Scholar
  47. 47.
    C. Csaki et al., Phys. Rev. D 68, 035009 (2003)CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    T. Gregoire, D.R. Smith, J.G. Wacker, Phys. Rev. D 69, 115008 (2004)CrossRefADSGoogle Scholar
  49. 49.
    M. Chen, S. Dawson, Phys. Rev. D 70, 015003 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Xuelei Wang
    • 1
    • 2
    Email author
  • Yaobei Liu
    • 2
  • Jihong Chen
    • 2
  • Hua Yang
    • 3
  1. 1.CCAST (World Laboratory)BeijingP.R. China
  2. 2.College of Physics and Information EngineeringHenan Normal UniversityXinxiangP.R. China
  3. 3.Department of Mathematics and Physics, College of ScienceInformation Engineering UniversityZhengzhouP.R. China

Personalised recommendations