Advertisement

Deformed conformal and super-Poincaré symmetries in the non- (anti-) commutative spaces

  • R. Banerjee
  • C. Lee
  • S. SiwachEmail author
Theoretical Physics

Abstract

Generators of the super-Poincaré algebra in the non- (anti-) commutative superspace are represented using appropriate higher derivative operators defined in this quantum superspace. Also discussed are the analogous representations of the conformal and superconformal symmetry generators in the deformed spaces. This construction is obtained by generalizing the recent work of Wess et al. on the Poincaré generators in the θ-deformed Minkowski space, or by using the substitution rules we derived on the basis of the phase-space structures of non- (anti-) commutative-space variables. Even with the non-zero deformation parameters the algebras remain unchanged although the comultiplication rules are deformed. The transformation of the fields under deformed symmetry is also discussed. Our construction can be used for systematic development of field theories in the deformed spaces.

Keywords

Commutation Relation Superconformal Algebra Leibniz Rule Conformal Algebra High Derivative Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.S. Snyder, Phys. Rev. 71, 38 (1947)MathSciNetCrossRefADSzbMATHGoogle Scholar
  2. 2.
    H.S. Snyder, Phys. Rev. 72, 68 (1947)MathSciNetCrossRefADSzbMATHGoogle Scholar
  3. 3.
    G.V. Dunne, R. Jackiw, C.A. Trugenberger, Phys. Rev. D 41, 661 (1990)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    N. Seiberg, E. Witten, JHEP 9909, 032 (1999)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    E. Langmann, R.J. Szabo, K. Zarembo, JHEP 0401, 017 (2004)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    J.E. Moyal, P. Camb. Philol. Soc. 45, 99 (1949)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    H.J. Groenewold, Physica 12, 405 (1946)MathSciNetCrossRefADSzbMATHGoogle Scholar
  9. 9.
    H. Weyl, Z. Phys. 46, 1 (1927)CrossRefADSGoogle Scholar
  10. 10.
    M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604, 98 (2004)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005)CrossRefADSGoogle Scholar
  12. 12.
    J. Wess, arXiv:hep-th/0408080Google Scholar
  13. 13.
    M. Dimitrijevic, J. Wess, arXiv:hep-th/0411224Google Scholar
  14. 14.
    M. Dimitrijevic, L. Jonke, L. Moller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Eur. Phys. J. C 31, 129 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  15. 15.
    M. Dimitrijevic, L. Moller, E. Tsouchnika, J. Phys. A 37, 9749 (2004)MathSciNetCrossRefADSzbMATHGoogle Scholar
  16. 16.
    M. Dimitrijevic, L. Jonke, L. Moller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Czech. J. Phys. 54, 1243 (2004)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    R. Banerjee, arXiv:hep-th/0508224Google Scholar
  18. 18.
    S. Ferrara, M.A. Lledo, JHEP 0005, 008 (2000)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    D. Klemm, S. Penati, L. Tamassia, Class. Quantum Grav. 20, 2905 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  20. 20.
    J. de Boer, P.A. Grassi, P. van Nieuwenhuizen, Phys. Lett. B 574, 98 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  21. 21.
    N. Seiberg, JHEP 0306, 010 (2003)CrossRefADSGoogle Scholar
  22. 22.
    F. Koch, E. Tsouchnika, Nucl. Phys. B 717, 387 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    P. Matlock, Phys. Rev. D 71, 126007 (2005)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1992)Google Scholar
  25. 25.
    I.L. Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace (Institute of Physics Publishing, Bristol Philadelphia, 1995)CrossRefzbMATHGoogle Scholar
  26. 26.
    Y. Kobayashi, S. Sasaki, Int. J. Mod. Phys. A 20, 7175 (2005)MathSciNetCrossRefADSzbMATHGoogle Scholar
  27. 27.
    B.M. Zupnik, Phys. Lett. B 627, 208 (2005)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    M. Ihl, C. Saemann, JHEP 0601, 065 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.J D Block, Sector IIIS N Bose National Centre for Basic SciencesSalt LakeIndia
  2. 2.School of Physics and Centre for Theoretical PhysicsSeoul National UniversitySeoulKorea

Personalised recommendations