Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Painlevé analysis, group classification and exact solutions to the nonlinear wave equations

  • 20 Accesses

Abstract

This paper is concerned with the general regular long-wave (RLW) types of equations. By the combination of Painlevé analysis and Lie group classification method, the conditional Painlevé property (PP) and Bäcklund transformations (BTs) of the nonlinear wave equations are provided under some conditions. Then, all of the point symmetries of the nonlinear RLW types of equations are obtained, the exact solutions to the equations are investigated. Particularly, some explicit solutions are provided by the special function and Φ-expansion method.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Biswas, Nonlinear Dyn. 59, 423 (2010)

  2. 2.

    D. Kaya, S. El-Sayed, Chaos Solitons Fractals 17, 869 (2003)

  3. 3.

    L. Wang, J. Zhou, L. Ren, Int. J. Nonlinear Sci. 1, 58 (2006)

  4. 4.

    N. Ibragimov,CRC handbook of Lie groups analysis of differential equations (CRC Press, Boca Raton, 1994)

  5. 5.

    M. Lakshmanan, P. Kaliappan, J. Math. Phys. 24, 795 (1983)

  6. 6.

    J. McLeod, P. Olver, SIAM J. Math. Anal. 14, 488 (1983)

  7. 7.

    P. Olver,Applications of Lie groups to differential equations (Springer, New York, 1993)

  8. 8.

    G. Bluman, A. Cheviakov, S. Anco,Applications of symmetry methods to partial differential equations (Springer-Verlag, New York, 2010)

  9. 9.

    V. Galaktionov, S. Svirshchevskii,Exact solutions and invariant subspaces of nonlinear partial differential equations in Mechanics and Physics (Chapman and Hall/, 2006)

  10. 10.

    C. Qu, C. Zhu, J. Phys. A: Math. Theor. 42, 475201 (2009)

  11. 11.

    W. Sinkala, P. Leach, J. O’Hara, J. Differ. Equat. 244, 2820 (2008)

  12. 12.

    W. Ma, Sci. Chin. Math. 55, 1769 (2012)

  13. 13.

    H. Liu, Y. Geng, J. Differ. Equat. 254, 2289 (2013)

  14. 14.

    H. Liu, J. Li, J. Comput. Appl. Math. 257, 144 (2014)

  15. 15.

    H. Liu, Appl. Math. Lett. 83, 164 (2018)

  16. 16.

    H. Liu, C. Yue, Nonlinear Dyn. 89, 1989 (2017)

  17. 17.

    W. Ma, Disc. Cont. Dyn. Syst. Sci. 11, 707 (2018)

  18. 18.

    W. Ma, Comput. Math. Appl. 78, 3422 (2019)

  19. 19.

    W. Ma, Appl. Math. Lett. 102, 106161 (2020)

  20. 20.

    H. Liu, L. Zhang, Chin. Phys. B 27, 040202 (2018)

  21. 21.

    F. Cariello, M. Tabor, Physica D 39, 77 (1989)

  22. 22.

    P. Clarkson, IMA J. Appl. Math. 44, 27 (1990)

  23. 23.

    Z. Wang, D. Guo,Introduction to special functions (Science Press, Beijing, 1965) (in Chinese)

  24. 24.

    P. Byrd, M. Fridman,Handbook of elliptic integrals for engineers and scientists (Springer, Berlin, 1970)

  25. 25.

    J. Li, Sci. Chin. A: Math. 50, 773 (2007)

  26. 26.

    W. Ma, B. Shekhtman, Linear Multilinear Alg. 58, 79 (2010)

  27. 27.

    H. Liu, X. Liu, Z. Wang, X. Xin, Nonlinear Dyn. 85, 281 (2016)

  28. 28.

    M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008)

Download references

Author information

Correspondence to Hanze Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Bai, C. & Xin, X. Painlevé analysis, group classification and exact solutions to the nonlinear wave equations. Eur. Phys. J. B 93, 26 (2020). https://doi.org/10.1140/epjb/e2020-100402-6

Download citation

Keywords

  • Statistical and Nonlinear Physics