Advertisement

Three-terminal normal-superconductor junction as thermal transistor

  • Gaomin TangEmail author
  • Jiebin Peng
  • Jian-Sheng Wang
Regular Article
  • 35 Downloads

Abstract

We propose a thermal transistor based on a three-terminal normal-superconductor junction with superconductor terminal acting as the base. The emergence of heat amplification is due to the negative differential thermal conductance (NDTC) effect for the NS diode in which the normal side maintains a higher temperature. The temperature dependent superconducting energy gap is responsible for the NDTC. By controlling quantum dot levels and their coupling strengths to the terminals, a huge heat amplification factor can be achieved. The setup offers an alternative tuning scheme of heat amplification factor and may find use in cryogenic applications.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    N. Li, J. Ren, L. Wang, G. Zhang, P. Häggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    G.E.W. Bauer, E. Saitoh, B.J. van Wees, Nat. Mater. 11, 391 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    A. Volokitin, B. Persson, Rev. Mod. Phys. 79, 1291 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    G. Tang, H.H. Yap, J. Ren, J.-S. Wang, https://doi.org/arXiv:1809.08829
  5. 5.
    B. Sothmann, R. Sánchez, A.N. Jordan, Nanotechnology 26, 032001 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    J.T. Muhonen, M. Meschke, J.P. Pekola, Rep. Prog. Phys. 75, 046501 (2012) ADSCrossRefGoogle Scholar
  7. 7.
    Ch. Grenier, A. Georges, C. Kollath, Phys. Rev. Lett. 113, 200601 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    P. Solinas, R. Bosisio, F. Giazotto, Phys. Rev. B 93, 224521 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    R. Sánchez, P. Burset, A.L. Yeyati, https://doi.org/arXiv:1806.04035
  10. 10.
    J. Fischer, J. Ulrich, Nat. Phys. 12, 4 (2016) CrossRefGoogle Scholar
  11. 11.
    M.R. Moldover, W.L. Tew, H.W. Yoon, Nat. Phys. 12, 7 (2016) CrossRefGoogle Scholar
  12. 12.
    B. Karimi, J.P. Pekola, Phys. Rev. Appl. 10, 054048 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Nat. Photon. 3, 220 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    C.W. Chang, D. Okawa, A. Majumdar, A. Zettl, Science 314, 1121 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    R. Scheibner, M. König, D. Reuter, A.D. Wieck, C. Gould, H. Buhmann, L.W. Molenkamp, New J. Phys. 10, 083016 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    J. Ren, Phys. Rev. B 88, 220406(R) (2013) ADSCrossRefGoogle Scholar
  17. 17.
    Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J.E. Garay, C. Dames, Nat. Commun. 5, 5446 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    J. Ren, J.-X. Zhu, Phys. Rev. B 89, 064512 (2014) ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Martínez-Pérez, A. Fornieri, F. Giazotto, Nat. Nanotechnol. 10, 303 (2015) ADSCrossRefGoogle Scholar
  20. 20.
    X. Cartoixà, L. Colombo, R. Rurali, Nano Lett. 15, 8255 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    G. Tang, X. Chen, J. Ren, J. Wang, Phys. Rev. B 97, 081407(R) (2018) ADSCrossRefGoogle Scholar
  22. 22.
    G. Tang, L. Zhang, J. Wang, Phys. Rev. B 97, 224311 (2018) ADSCrossRefGoogle Scholar
  23. 23.
    B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    W.C. Lo, L. Wang, B. Li, J. Phys. Soc. Jpn. 77, 054402 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    T.S. Komatsu, N. Ito, Phys. Rev. E 83, 012104 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    S.R. Sklan, J.C. Grossman, New J. Phys. 16, 053029 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    P. Ben-Abdallah, S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    K. Joulain, Y. Ezzahri, J. Drevillon, P. Ben-Abdallah, Appl. Phys. Lett. 106, 133505 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    J. Ordonez-Miranda, Y. Ezzahri, J. Drevillon, K. Joulain, Phys. Rev. Appl. 6, 054003 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    K. Joulain, J. Drevillon, Y. Ezzahri, J. Ordonez-Miranda, Phys. Rev. Lett. 116, 200601 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    A. Fornieri, G. Timossi, R. Bosisio, P. Solinas, F. Giazotto, Phys. Rev. B 93, 134508 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    R. Sánchez, H. Thierschmann, L.W. Molenkamp, Phys. Rev. B 95, 241401(R) (2017) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Zhang, Z. Yang, X. Zhang, B. Lin, G. Lin, J. Chen, Europhys. Lett. 122, 17002 (2018) ADSCrossRefGoogle Scholar
  34. 34.
    C. Wang, X.-M. Chen, K.-W. Sun, J. Ren, Phys. Rev. A 97, 052112 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    J. Lu, R. Wang, J. Ren, M. Kulkarni, J.-H. Jiang, https://doi.org/arXiv:1807.08152
  36. 36.
    J. Bardeen, W.H. Brattain, Phys. Rev. 74, 230 (1948) ADSCrossRefGoogle Scholar
  37. 37.
    W. Shockley, Bell Syst. Tech. J. 28, 435 (1949) CrossRefGoogle Scholar
  38. 38.
    D.H. He, S. Buyukdagli, B. Hu, Phys. Rev. B 80, 104302 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    D.H. He, B.Q. Ai, H.K. Chan, B. Hu, Phys. Rev. E 81, 041131 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    H.K. Chan, D.H. He, B. Hu, Phys. Rev. E 89, 052126 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    F. Giazotto, M.J. Martínez-Pérez, Nature (London) 492, 401 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    A. Fornieri, C. Blanc, R. Bosisio, S. D’Ambrosio, F. Giazotto, Nat. Nanotechnol. 11, 258 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    J. Linder, M.E. Bathen, Phys. Rev. B 93, 224509 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    G.F. Timossi, A. Fornieri, F. Paolucci, C. Puglia, F. Giazotto, Nano Lett. 18, 1764 (2018) ADSCrossRefGoogle Scholar
  45. 45.
    C. Guarcello, P. Solinas, A. Braggio, M. Di Ventra, F. Giazotto, Phys. Rev. Appl. 9, 014021 (2018) ADSCrossRefGoogle Scholar
  46. 46.
    J. Ren, J.-X. Zhu, Phys. Rev. B 87, 165121 (2013) ADSCrossRefGoogle Scholar
  47. 47.
    X. Zhou, Z. Zhang, J. Appl. Phys. 119, 175107 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957) ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    F. Gross, B.S. Chandrasekhar, D. Einzel, K. Andres, P.J. Hirschfeld, H.R. Ott, J. Beuers, Z. Fisk, J.L. Smith, Z. Phys. B 64, 175 (1986) ADSCrossRefGoogle Scholar
  50. 50.
    Q.F. Sun, J. Wang, T.H. Lin, Phys. Rev. B 59, 3831 (1999) ADSCrossRefGoogle Scholar
  51. 51.
    A. Martin-Rodero, A.L. Yeyati, Adv. Phys. 60, 899 (2011) ADSCrossRefGoogle Scholar
  52. 52.
    R.C. Dynes, V. Narayanamurti, J.P. Garno, Phys. Rev. Lett. 41, 1509 (1978) ADSCrossRefGoogle Scholar
  53. 53.
    P. Burset, W.J. Herrera, A.L. Yeyati, Phys. Rev. B 84, 115448 (2011) ADSCrossRefGoogle Scholar
  54. 54.
    J. Tao, R.P. Prasankumar, E.E.M. Chia, A.J. Taylor, J.-X. Zhu, Phys. Rev. B 85, 144302 (2012) ADSCrossRefGoogle Scholar
  55. 55.
    P. Recher, E.V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001) ADSCrossRefGoogle Scholar
  56. 56.
    L. Hofstetter, S. Csonka, J. Nygård, C. Schönenberger, Nature (London) 461, 960 (2009) ADSCrossRefGoogle Scholar
  57. 57.
    A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A.V. Kretinin, H. Shtrikman, Nat. Commun. 3, 1165 (2012) ADSCrossRefGoogle Scholar
  58. 58.
    G. Fülöp, S. d’Hollosy, A. Baumgartner, P. Makk, V.A. Guzenko, M.H. Madsen, J. Nygård, C. Schönenberger, S. Csonka, Phys. Rev. B 90, 235412 (2014) ADSCrossRefGoogle Scholar
  59. 59.
    G. Fülöp, F. Domínguez, S. d’Hollosy, A. Baumgartner, P. Makk, M.H. Madsen, V.A. Guzenko, J. Nygård, C. Schönenberger, A. Levy Yeyati, S. Csonka, Phys. Rev. Lett. 115, 227003 (2015) ADSCrossRefGoogle Scholar
  60. 60.
    F. Domínguez, A.L. Yeyati, Physica E 75, 322 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji UniversityShanghaiP.R. China

Personalised recommendations