Advertisement

Investigation of DNA denaturation in Peyrard-Bishop-Dauxois model by molecular dynamics method

  • Ilya Viatcheslavovitch LikhachevEmail author
  • Victor Dmitrievitch Lakhno
Regular Article
  • 11 Downloads

Abstract

The phase transition of (PolyA/PolyT)100 duplex into the denaturated state is studied in the Peyrard-Bishop-Dauxois model by the method of direct molecular-dynamical modeling. The temperature dependencies of the total energy and heat capacity of the duplex are calculated. The convergence of the dependence of heat capacity on the number of realizations is shown. The approach applied can be used to calculate the statistical properties of the duplexes of any length and nucleotide composition.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R.M. Wartell, A.S. Benight, Phys. Rep. 126, 67 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    T. Dauxois, M.J. Peyrard, Phys. Rev. E 47, 44 (1993) ADSCrossRefGoogle Scholar
  4. 4.
    T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E. 47, 684 (1993) ADSCrossRefGoogle Scholar
  5. 5.
    B.S. Alexandrov, L.T. Wille, K.Ø. Rasmussen, A.R. Bishop, K.B. Blagoev, Phys. Rev. E 74, 050901 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    F. De los Santos, O. Al Hammal, M.A. Muñoz, Phys. Rev. E 77, 1 (2008) CrossRefGoogle Scholar
  7. 7.
    W.G. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982) ADSCrossRefGoogle Scholar
  8. 8.
    W.G. Hoover, A.J.C. Ladd, B. Moran, Phys. Rev. Lett. 48, 1818 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    N.K. Balabaev, A.S. Lemak, J. Phys. Chem. 69, 28 (1995) Google Scholar
  10. 10.
    A.S. Lemak, N.K. Balabaev, Mol. Simul. 15, 223 (1995) CrossRefGoogle Scholar
  11. 11.
    A.S. Lemak, N.K. Balabaev, J. Comput. Chem. 17, 1685 (1996) CrossRefGoogle Scholar
  12. 12.
    T. Dauxois, M.J. Payrard, Phys. Rev. E 51, 4027 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Zoli, Phys. Rev. E 79, 041927 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    P. Vaitiekunas, C.-R. Colyn, P.L. Privalov, Nucleic Acids Res. 43, 8577 (2015) CrossRefGoogle Scholar
  15. 15.
    S. Srivastava, N. Singh, J. Chem. Phys. 134, 21 (2011) Google Scholar
  16. 16.
    J. Marmur, P. Doty, J. Mol. Biol. 5, 109 (1962) CrossRefGoogle Scholar
  17. 17.
    M. Joyeux, S. Buyukdagli, Phys. Rev. E 72, 051902 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Di Nola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) ADSCrossRefGoogle Scholar
  19. 19.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985) ADSCrossRefGoogle Scholar
  20. 20.
    P.L. Privalov, N.N. Khechinashvili, J. Mol. Biol. 86, 665 (1974) CrossRefGoogle Scholar
  21. 21.
    W. Ebeling, V. Podlipchuk, A. Valuev, Physica A 217, 22 (1995) ADSCrossRefGoogle Scholar
  22. 22.
    A. Campa, A. Giansanti, Phys. Rev. E 58, 3585 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    V. Sadovnichy, A. Tikhonravov, V.l. Voevodin, V. Opanasenko,Computational Science (CRC Press, Boca Raton, USA, 2013) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMPB RAS, 1, Professor Vitkevich St.Pushchino, Moscow RegionRussia

Personalised recommendations