Advertisement

Quantifying postural sway dynamics using burstiness and interevent time distributions

  • Sergio PicoliEmail author
  • Edenize S. D. Santos
  • Pedro P. Deprá
  • Renio S. Mendes
Regular Article
  • 24 Downloads

Abstract

We propose an approach for analysing the dynamics of human postural sway using measures applied to study inhomogeneous temporal processes. Basically, we defined zero-crossings of center of pressure (COP) trajectories as events, obtained the sequence of interevent times and investigated the mean interevent time, the burstiness coefficient and the full functional form of the interevent time distribution. We applied this approach to data obtained for healthy young adults during quiet standing, under bipedal and unipedal conditions. We found that the proposed COP-based measures are able to detect differences between bipedal and unipedal postural sway temporal patterns, including the presence (or absence) of burstiness. We discussed the potential of this analysis to quantify temporal patterns of postural sway.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Balasubramaniam, A.M. Wing, Trends Cogn. Sci. 6, 531 (2002) CrossRefGoogle Scholar
  2. 2.
    T.E. Prieto, J.B. Myklebust, R.G. Hoffmann, E.G. Lovett, B.M. Myklebust, IEEE Trans. Biomed. Eng. 43, 956 (1996) CrossRefGoogle Scholar
  3. 3.
    J.J. Collins, C.J. De Luca, Exp. Brain Res. 95, 308 (1993) CrossRefGoogle Scholar
  4. 4.
    J.J. Collins, C.J. De Luca, Phys. Rev. Lett. 73, 764 (1994) ADSCrossRefGoogle Scholar
  5. 5.
    S.M. Slobounov, E.S. Slobounova, K.M. Newell, J. Mot. Behav. 29, 263 (1997) CrossRefGoogle Scholar
  6. 6.
    M.A. Riley, R. Balasubramaniam, M.T. Turvey, Gait Posture 9, 65 (1999) CrossRefGoogle Scholar
  7. 7.
    Y.U. Shimizu, S. Thurner, K. Ehrenberger, Fractals 10, 103 (2002) CrossRefGoogle Scholar
  8. 8.
    M. Jacono, M. Casadio, P.G. Morasso, V. Sanguineti, Motor Control 8, 292 (2004) CrossRefGoogle Scholar
  9. 9.
    C. Maurer, T. Mergner, R. Peterka, Exp. Brain Res. 157, 369 (2004) CrossRefGoogle Scholar
  10. 10.
    C. Burdet, P. Rougier, J. Appl. Biomech. 23, 63 (2007) CrossRefGoogle Scholar
  11. 11.
    S. Ramdani et al., Ann. Biomed. Eng. 39, 161 (2011) CrossRefGoogle Scholar
  12. 12.
    T. Yamamoto et al., J. Adv. Comput. Intell. Intell. Inform. 15, 997 (2011) CrossRefGoogle Scholar
  13. 13.
    V. Agostini, E. Chiaramello, L. Canavese, C. Bredariol, M. Knaflitz, Hum. Mov. Sci. 32, 445 (2013) CrossRefGoogle Scholar
  14. 14.
    E.S.D. Santos, S. Picoli, P.P. Deprá, R.S. Mendes, Europhys. Lett. 109, 48001 (2015) ADSCrossRefGoogle Scholar
  15. 15.
    T. Yamamoto et al., Phys. Rep. 3, e12329 (2015) CrossRefGoogle Scholar
  16. 16.
    A. Corral, Phys. Rev. Lett. 92, 108501 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    M.S. Wheatland, P.A. Sturrock, J.M. McTiernan, Astrophys. J. 509, 448 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    E. Lippiello, L. de Arcangelis, C. Godano, Astron. Astrophys. 488, L29 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    T. Kemuriyama et al., BioSystems 101, 144 (2010) CrossRefGoogle Scholar
  20. 20.
    J. Eckmann, E. Moses, D. Sergi, Proc. Natl. Acad. Sci. USA 101, 14337 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    A.-L. Barabási, Nature 435, 211 (2005) CrossRefGoogle Scholar
  22. 22.
    K.-I. Goh, A.-L. Barabási, Europhys. Lett. 81, 48002 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    M. Pica Ciamarra, A. Coniglio, L. de Arcangelis, Europhys. Lett. 84, 28004 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    J. Ratkiewicz, S. Fortunato, A. Flammini, F. Menczer, A. Vespignani, Phys. Rev. Lett. 105, 158701 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    M. Karsai, K. Kaski, A.-L. Barabási, J. Kertész, Sci. Rep. 2, 397 (2012) CrossRefGoogle Scholar
  26. 26.
    N. Johnson et al., Science 333, 81 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    S. Picoli, M. del Castillo-Mussot, H.V. Ribeiro, E.K. Lenzi, R.S. Mendes, Sci. Rep. 4, 4773 (2014) CrossRefGoogle Scholar
  28. 28.
    T. Nakamura et al., Phys. Rev. Lett. 99, 138103 (2007) ADSCrossRefGoogle Scholar
  29. 29.
    A. Paraschiv-lonescu, E. Buchser, K. Aminian, Sci. Rep. 3, 2019 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    E.-K. Kim, H.-H. Jo, Phys. Rev. E 94, 032311 (2016) ADSCrossRefGoogle Scholar
  31. 31.
    J. Laherrère, D. Sornette, Eur. Phys. J. B 2, 525 (1998) ADSCrossRefGoogle Scholar
  32. 32.
    E.G. Altmann, H. Kantz, Phys. Rev. E 71, 056106 (2005) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    T. Tanaka, N. Hashimoto, M. Nakata, T. Ito, S. Ino, T. Ifukube, J. Orthop. Sport Phys. Ther. 23, 188 (1996) CrossRefGoogle Scholar
  34. 34.
    M. Karsai, H.-H. Jo, K. Kaski, Bursty Human Dynamics (Springer, 2018) Google Scholar
  35. 35.
    L. de Arcangelis, C. Godano, J.R. Grasso, E. Lippiello, Phys. Rep. 628, 1 (2016) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    L. de Arcangelis, C. Godano, E. Lippiello, M. Nicodemi, Phys. Rev. Lett. 96, 051102 (2006) ADSCrossRefGoogle Scholar
  37. 37.
    E. Lippiello, L. de Arcangelis, C. Godano, Astron. Astrophys. 511, L2 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    M. Bottiglieri, L. de Arcangelis, C. Godano, E. Lippiello, Phys. Rev. Lett. 104, 158501 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sergio Picoli
    • 1
    Email author
  • Edenize S. D. Santos
    • 2
  • Pedro P. Deprá
    • 3
  • Renio S. Mendes
    • 1
  1. 1.Departamento de Física and National Institute of Science and Technology for Complex Systems, Universidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento Acadêmico de Física, Universidade Tecnológica Federal do ParanáApucaranaBrazil
  3. 3.Departamento de Educação Física, Laboratory of Biomechanics and Motor Behaviour, Universidade Estadual de MaringáMaringáBrazil

Personalised recommendations