Advertisement

Graph theoretical approaches for the characterization of damage in hierarchical materials

  • Paolo MorettiEmail author
  • Jakob Renner
  • Ali Safari
  • Michael Zaiser
Regular Article
  • 45 Downloads
Part of the following topical collections:
  1. Topical issue: Complex Systems Science meets Matter and Materials

Abstract

We discuss the relevance of methods of graph theory for the study of damage in simple model materials described by the random fuse model. While such methods are not commonly used when dealing with regular random lattices, which mimic disordered but statistically homogeneous materials, they become relevant in materials with microstructures that exhibit complex multi-scale patterns. We specifically address the case of hierarchical materials, whose failure, due to an uncommon fracture mode, is not well described in terms of either damage percolation or crack nucleation-and-growth. We show that in these systems, incipient failure is accompanied by an increase in eigenvector localization and a drop in topological dimension. We propose these two novel indicators as possible candidates to monitor a system in the approach to failure. As such, they provide alternatives to monitoring changes in the precursory avalanche activity, which is often invoked as a candidate for failure prediction in materials which exhibit critical-like behavior at failure, but may not work in the context of hierarchical materials which exhibit scale-free avalanche statistics even very far from the critical load. For such anomalous systems, our novel indicators prove more effective in the analysis of digital image correlation data from experiments, as well as from large-scale numerical simulations.

Graphical abstract

References

  1. 1.
    A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Nano Lett. 11, 766 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 102 (1998) CrossRefGoogle Scholar
  3. 3.
    H. Gupta, J. Seto, W. Wagermaier, P. Zaslansky, P. Boesecke, P. Fratzl, Proc. Nat. Acad. Sci. USA 103, 17746 (2006) ADSGoogle Scholar
  4. 4.
    P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 52, 1334 (2007) CrossRefGoogle Scholar
  5. 5.
    J. Sun, B. Bhushan, RSC Adv. 2, 7632 (2012) Google Scholar
  6. 6.
    D. Jiao, Z. Liu, Z. Zhang, Z. Zhang, Sci. Rep. 5, 12418 (2015) ADSCrossRefGoogle Scholar
  7. 7.
    P. Moretti, B. Dietemann, N. Esfandiary, M. Zaiser, Sci. Rep. 8, 12090 (2018) ADSCrossRefGoogle Scholar
  8. 8.
    L. Ponson, D. Bonamy, E. Bouchaud, Phys. Rev. Lett. 96, 035506 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    D. Bonamy, L. Ponson, S. Prades, E. Bouchaud, C. Guillot, Phys. Rev. Lett. 97, 135504 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    L. Ponson, H. Auradou, M. Pessel, V. Lazarus, J.P. Hulin, Phys. Rev. E 76, 036108 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    L.I. Salminen, M.J. Alava, K.J. Niskanen, Eur. Phys. J. B 32, 374 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    S. Zapperi, P.K.V.V. Nukala, S. Simunović, Phys. Rev. E 71, 026106 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Adv. Phys. 55, 476 (2006) CrossRefGoogle Scholar
  14. 14.
    M. Kaiser, M. Görner, C.C. Hilgetag, New J. Phys. 9, 110 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    P. Moretti, M.A. Muñoz, Nat. Commun. 4, 2521 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    S. Boettcher, J.L. Cook, R.M. Ziff, Phys. Rev. E 80, 041115 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    E.J. Friedman, A.S. Landsberg, Chaos 23, 013135 (2013) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.V. Goltsev, S.N. Dorogovtsev, J.G. Oliveira, J.F.F. Mendes, Phys. Rev. Lett. 109, 128702 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    R. Pastor-Satorras, C. Castellano, Sci. Rep. 6, 18847 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    G. Ódor, R. Dickman, G. Ódor, Sci. Rep. 5, 14451 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    A. Safari, P. Moretti, M.A. Muñoz, New J. Phys. 19, 113011 (2017) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    E. Agliari, A. Barra, A. Galluzzi, F. Guerra, D. Tantari, F. Tavani, Phys. Rev. Lett. 114, 028103 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    S. Sandfeld, M. Zaiser, J. Stat. Mech. 2014, P03014 (2014) CrossRefGoogle Scholar
  24. 24.
    G. Costagliola, F. Bosia, N.M. Pugno, Phys. Rev. E 94, 063003 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paolo Moretti
    • 1
    Email author
  • Jakob Renner
    • 1
  • Ali Safari
    • 1
  • Michael Zaiser
    • 1
  1. 1.Department of Materials ScienceWW8-Materials Simulation, FAU Universität Erlangen-NürnbergFürthGermany

Personalised recommendations