Advertisement

Unidirectional propagation in hybrid photonic crystals and clusters

  • Donatella Schiumarini
  • Andrea D’AndreaEmail author
Regular Article
  • 25 Downloads

Abstract

In the present work, we will perform the tailoring of resonant hybrid photonic crystals (RHPC) and clusters, based on the elementary cell of a resonant hybrid minimum model, in order to study its optical chiral properties, due to the space inversion symmetry breakdown and optical rotation effect, that are able to preserve unidirectional exciton-polariton propagation and photonic band gap formation. The optical chiral properties of these non-magnetic hybrid system will be discussed and the main optical parameter values, in order to observe unidirectional exciton-polariton propagation, will be evaluated in the self-consistent mesoscopic framework for the YVO4/GaAs hybrid system.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    F. Jonsson, C. Flytzanis, Phys. Rev. Lett. 97, 193903 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    A. Figotin, I. Vitebskiy, Phys. Rev. B 67, 165210 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Poshakinskiy, A.N. Poddubny, L. Pilozzi, E.L. Ivchenko, Phys. Rev. Lett. 112, 107404 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    L.V. Kotova, A.V. Platonov, V.N. Kats, V.P. Kochereshko, S.V. Sorokin, S.V. Ivanov, L.E. Golub, Phys. Rev. B 94, 165309 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    A. D’Andrea, N. Tomassini, Phys. Rev. A 94, 013840 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    D. Schiumarini, A. D’Andrea, N. Tomassini, J. Opt. 18, 035101 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    A. D’Andrea, N. Tomassini, Europhys. Lett. 117, 67002 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    R. Atanasov, F. Bassani, A. D’Andrea, N. Tomassini, Phys. Rev. B 50, 14381 (1994) ADSCrossRefGoogle Scholar
  10. 10.
    Ed.R. Del Sole, A. D’Andrea, A. Lapiccirella, Exciton in Confined Systems, in Springer Proceedings in Physics (1988), Vol. 25 Google Scholar
  11. 11.
    L. Pilozzi, A. D’Andrea, K. Cho, Phys. Rev. B 69, 205311 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    D. Schiumarini, N. Tomassini, L. Pilozzi, A. D’Andrea, Phys. Rev. B 82, 075303 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    H.C. Schneider, F. Jahnke, S.W. Koch, J. Tignon, T. Hasche, D.S. Chemla, Phys. Rev. B 63, 045202 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    A. Figotin, I. Vitebskiy, Phys. Rev. E 68, 036609 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    J. Ballato, A. Ballato, A. Figotin, I. Vitebskiy, Phys. Rev. E 71, 036612 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    X.L. Chen, M. He, Y.X. Du, W.Y. Wang, D.F. Zhang, Phys. Rev. B 72, 113111 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    C. Vandenbem, J.P. Vigneron, J.M. Vigoureux, J. Opt. Soc. Am. B 23, 2366 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto di Struttura della Materia, CNR, C.P. 10, Monterotondo StazioneRomeItaly

Personalised recommendations