Advertisement

A model for a driven Frenkel–Kontorova chain

  • Wolfgang QuappEmail author
  • Josep Maria Bofill
Regular Article
  • 14 Downloads

Abstract

We study a Frenkel–Kontorova (FK) model of a finite chain with free-end boundary conditions. The model has two competing potentials. Newton trajectories are an ideal tool to understand the circumstances under a driving of an FK chain by external forces. To reach the insights we calculate some stationary structures for a chain with 23 particles. We search the lowest energy saddle points for a complete minimum energy path of the chain for a movement over the full period of the on-site potential, a sliding. If an additional tilting is set, then one is interested in barrier breakdown points (BBPs) on the potential energy surface for a critical tilting force named the static frictional force. In symmetric cases, such BBPs are often valley-ridge inflection points of the potential energy surface. We explain the theory and demonstrate it with an example. We propose a model for a DC drive, as well as an AC drive, of the chain using special directional vectors of the external force.

Graphical abstract

Keywords

Computational Methods 

Supplementary material

References

  1. 1.
    O.M. Braun, Y.S. Kivshar, Phys. Rep. 306, 1 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    J. Tekić, P. Mali, The ac Driven Frenkel-Kontorova Model (University of Novi Sad, Novi Sad, 2015) Google Scholar
  3. 3.
    O. Braun, T. Dauxois, M. Paliy, M. Peyrard, B. Hu, Physica D 123, 357 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    S. Brazovskii, T. Nattermann, Adv. Phys. 53, 177 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    M. Johansson, G. Kopidakis, S. Lepri, S. Aubry, Europhys. Lett. 86, 10009 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    R. Khomeriki, Eur. Phys. J. B 72, 257 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    S. Watanabe, H.S.J. van der Zant, S.H. Strogatz, T.P. Orlando, Physica D 97, 429 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    O. Braun, A. Naumovets, Surf. Sci. Rep. 60, 79 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    N. Manini, O.M. Braun, E. Tosatti, R. Guerra, A. Vanossi, J. Phys. 28, 134006 (2016) Google Scholar
  11. 11.
    A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, Rev. Mod. Phys. 85, 529 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    N.I. Gershenzon, G. Bambakidis, E. Hauser, A. Ghosh, K.C. Creager, Geophys. Res. Lett. 38, L01309 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    T. Zanca, F. Pellegrini, G.E. Santoro, E. Tosatti, PNAS 115, 3547 (2018) ADSCrossRefGoogle Scholar
  14. 14.
    W. Quapp, J.M. Bofill, Mol. Phys. (2019),  https://doi.org/10.1080/00268976.2019.1576930
  15. 15.
    W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003) CrossRefGoogle Scholar
  16. 16.
    S.R. Sharma, B. Bergersen, B. Joos, Phys. Rev. B 29, 6335 (1984) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Braiman, J. Baumgarten, J. Jortner, J. Klafter, Phys. Rev. Lett. 65, 2398 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    S.L. Shumway, J.P. Sethna, Phys. Rev. Lett. 67, 995 (1991) ADSCrossRefGoogle Scholar
  19. 19.
    C. Baesens, R.S. MacKay, Nonlinearity 11, 949 (1998) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    T. Strunz, F.J. Elmer, Phys. Rev. E 58, 1601 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    N. Theodorakopoulos, M. Peyrard, R.S. MacKay, Phys. Rev. Lett. 93, 258101 (2004) ADSCrossRefGoogle Scholar
  22. 22.
    I.D. Mikheikin, M.Y. Kuznetsov, E.V. Makhonina, V.S. Pervov, J. Mater. Synth. Process. 10, 53 (2002) CrossRefGoogle Scholar
  23. 23.
    A. Bylinskii, D. Gangloff, I. Counts, V. Vuletić, Nat. Mater. 15, 717 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, T.E. Mehlstäubler, Nat. Commun. 8, 15364 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    S.N. Coppersmith, Phys. Rev. A 36, 3375 (1987) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Hu, J.Y. Zhu, Phys. Rev. E 65, 016202 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    A. Patrykiejew, S. Sokolowski, Condens. Matter Phys. 17, 43601:1 (2014) Google Scholar
  28. 28.
    J. Zhang, X. Chen, R. Chen, L. Nie, Z. Zheng, Eur. Phys. J. B 87, 122 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    X. Zhang, L. Nie, K. Ma, J. Zhang, J. Wu, F. Ye, C. Xiao, Mod. Phys. Lett. B 32, 1850017 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    P. Bak, Rep. Prog. Phys. 45, 587 (1982) ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Bofill, J. Ribas-Ariño, S.P. García, W. Quapp, J. Chem. Phys. 147, 152710 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    W. Quapp, B. Schmidt, Theor. Chem. Acc. 128, 47 (2011) CrossRefGoogle Scholar
  33. 33.
    B. Schmidt, W. Quapp, Theor. Chem. Acc. 132, 1305 (2012) CrossRefGoogle Scholar
  34. 34.
    C. Baesens, R.S. MacKay, Nonlinearity 17, 567 (2004) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Z. Zheng, B. Hu, G. Hu, Phys. Rev. B 58, 5453 (1998) ADSCrossRefGoogle Scholar
  36. 36.
    O.M. Braun, A.R. Bishop, J. Röder, Phys. Rev. Lett. 79, 3692 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    O.M. Braun, B. Hu, A. Zeltser, Phys. Rev. E 62, 4235 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    O.M. Braun, H. Zhang, B. Hu, J. Tekić, Phys. Rev. E 67, 06602 (2003) CrossRefGoogle Scholar
  39. 39.
    A.B. Kolton, D. Dominguez, N. Gronbech-Jensen, Phys. Rev. Lett. 86, 4112 (2001) ADSCrossRefGoogle Scholar
  40. 40.
    S. Slijepčević, Chaos 25, 083108 (2015) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    I. Sokolović, P. Mali, J. Odavić, S. Radosevic, S.Y. Medvedeva, A.E. Botha, Y.M. Shukrinov, J. Tekić, Phys. Rev. E 96, 022210 (2017) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Odavić, P. Malik, J. Tekić, M. Pantic, M. Pavkov-Hrvojevic, Commun. Nonlinear Sci. Numer. Simul. 47, 100 (2017) ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    H. Li, S. Liu, Discrete Dyn. Nat. Soc. 47, 7081804 (2018) Google Scholar
  44. 44.
    M. Hirano, K. Shinjo, Phys. Rev. B 41, 11837 (1990) ADSCrossRefGoogle Scholar
  45. 45.
    A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004) ADSCrossRefGoogle Scholar
  46. 46.
    M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    E. Gnecco, S. Maier, E. Meyer, J. Phys.: Condens. Matter 20, 354004 (2008) Google Scholar
  48. 48.
    E. Meyer, E. Gnecco, Friction 2, 106 (2014) CrossRefGoogle Scholar
  49. 49.
    A. Bylinskii, D. Gangloff, V. Vuletić, Science 348, 1115 (2015) ADSCrossRefGoogle Scholar
  50. 50.
    W. Quapp, M. Hirsch, O. Imig, D. Heidrich, J. Comput. Chem. 19, 1087 (1998) CrossRefGoogle Scholar
  51. 51.
    W. Quapp, M. Hirsch, D. Heidrich, Theor. Chem. Acc. 100, 285 (1998) CrossRefGoogle Scholar
  52. 52.
    J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 105, 463 (2001) CrossRefGoogle Scholar
  53. 53.
    R. Crehuet, J.M. Bofill, J.M. Anglada, Theor. Chem. Acc. 107, 130 (2002) CrossRefGoogle Scholar
  54. 54.
    W. Quapp, J. Theor. Comput. Chem. 2, 385 (2003) CrossRefGoogle Scholar
  55. 55.
    W. Quapp, J.M. Bofill, Theor. Chem. Acc. 135, 113 (2016) CrossRefGoogle Scholar
  56. 56.
    W. Quapp, J.M. Bofill, J. Ribas-Ariño, J. Phys. Chem. A 121, 2820 (2017) CrossRefGoogle Scholar
  57. 57.
    M. Hirsch, W. Quapp, J. Mol. Struct. THEOCHEM 683, 1 (2004) CrossRefGoogle Scholar
  58. 58.
    B. Peters, A. Heyden, A.T. Bell, A. Chakraborty, J. Chem. Phys. 120, 7877 (2004) ADSCrossRefGoogle Scholar
  59. 59.
    W. Quapp, J. Chem. Phys. 122, 174106 (2005) ADSCrossRefGoogle Scholar
  60. 60.
    D.E. Makarov, J. Chem. Phys. 144, 030901 (2016) ADSCrossRefGoogle Scholar
  61. 61.
    W. Quapp, J.M. Bofill, J. Comput. Chem. 37, 2467 (2016) CrossRefGoogle Scholar
  62. 62.
    M. Basilevsky, A. Shamov, Chem. Phys. 60, 347 (1981) CrossRefGoogle Scholar
  63. 63.
    D.K. Hoffmann, R.S. Nord, K. Ruedenberg, Theor. Chim. Acta 69, 265 (1986) CrossRefGoogle Scholar
  64. 64.
    W. Quapp, Theor. Chim. Acta 75, 447 (1989) CrossRefGoogle Scholar
  65. 65.
    H.B. Schlegel, Theor. Chim. Acta 83, 15 (1992) CrossRefGoogle Scholar
  66. 66.
    J.Q. Sun, K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993) ADSCrossRefGoogle Scholar
  67. 67.
    M. Hirsch, W. Quapp, Chem. Phys. Lett. 395, 150 (2004) ADSCrossRefGoogle Scholar
  68. 68.
    J.M. Bofill, W. Quapp, M. Caballero, J. Chem. Theory Comput. 8, 927 (2012) CrossRefGoogle Scholar
  69. 69.
    I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41, 325 (2007) ADSCrossRefGoogle Scholar
  70. 70.
    D. Heidrich, W. Quapp, Theor. Chim. Acta 70, 89 (1986) CrossRefGoogle Scholar
  71. 71.
    Y.G. Khait, A.I. Panin, A.S. Averyanov, Int. J. Quantum Chem. 54, 329 (1994) CrossRefGoogle Scholar
  72. 72.
    P. Chaudhury, S. Bhattacharyya, Chem. Phys. 241, 313 (1999) CrossRefGoogle Scholar
  73. 73.
    R.M. Minyaev, I.V. Getmanskii, W. Quapp, Russ. J. Phys. Chem. 78, 1494 (2004) Google Scholar
  74. 74.
    G.S. Ezra, S. Wiggins, J. Phys. A 42, 205101 (2009) ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    P. Collins, G.S. Ezra, S. Wiggins, J. Chem. Phys. 134, 244105 (2011) ADSCrossRefGoogle Scholar
  76. 76.
    J.M. Bofill, W. Quapp, M. Caballero, Chem. Phys. Lett. 583, 203 (2013) ADSCrossRefGoogle Scholar
  77. 77.
    W. Quapp, J.M. Bofill, Int. J. Quantum Chem. 115, 1635 (2015) CrossRefGoogle Scholar
  78. 78.
    W. Quapp, E. Kraka, D. Cremer, J. Phys. Chem. 111, 11287 (2007) CrossRefGoogle Scholar
  79. 79.
    H. Joo, E. Kraka, W. Quapp, D. Cremer, Mol. Phys. 105, 2697 (2007) ADSCrossRefGoogle Scholar
  80. 80.
    M. Hirsch, W. Quapp, D. Heidrich, Phys. Chem. Chem. Phys. 1, 5291 (1999) CrossRefGoogle Scholar
  81. 81.
    W. Quapp, V. Melnikov, Phys. Chem. Chem. Phys. 3, 2735 (2001) CrossRefGoogle Scholar
  82. 82.
    W. Quapp, J. Bofill, A. Aguilar-Mogas, Theor. Chem. Acc. 129, 803 (2011) CrossRefGoogle Scholar
  83. 83.
    W. Quapp, J. Math. Chem. 54, 137 (2015) MathSciNetCrossRefGoogle Scholar
  84. 84.
    D.R. Yarkony, J. Chem. Phys. 123, 204101 (2005) ADSCrossRefGoogle Scholar
  85. 85.
    W. Quapp, J.M. Bofill, M. Caballero, Chem. Phys. Lett. 541, 122 (2012) ADSCrossRefGoogle Scholar
  86. 86.
    T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haeffner, New J. Phys. 13, 075012 (2011) ADSCrossRefGoogle Scholar
  87. 87.
    E. Panizon, G.E. Santoro, E. Tosatti, G. Riva, N. Manini, Phys. Rev. B 97, 104104 (2018) ADSCrossRefGoogle Scholar
  88. 88.
    D. Mandelli, R. Guerra, W. Ouyang, M. Urbakh, A. Vanossi, Phys. Rev. Mater. 2, 046001 (2018) CrossRefGoogle Scholar
  89. 89.
    M. Weiss, F.J. Elmer, Z. Phys. B 69, 55 (1997) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches Institut, Universität Leipzig, PF 100920LeipzigGermany
  2. 2.Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, and Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de BarcelonaBarcelonaSpain

Personalised recommendations