Advertisement

Reactive explorers to unravel network topology

  • Ihusan Adam
  • Duccio FanelliEmail author
  • Timoteo Carletti
  • Giacomo Innocenti
Regular Article
  • 19 Downloads

Abstract

A procedure is developed and tested to recover the distribution of connectivity of an a priori unknown network, by sampling the dynamics of an ensemble made of reactive walkers. The relative weight between reaction and relocation is gauged by a scalar control parameter, which can be adjusted at will. Different equilibria are attained by the system, following the externally imposed modulation, and reflecting the interplay between reaction and diffusion terms. The information gathered on the observation node is used to predict the stationary density as displayed by the system, via a direct implementation of the celebrated Heterogeneous Mean Field (HMF) approximation. This knowledge translates into a linear problem which can be solved to return the entries of the sought distribution. A variant of the model is then considered which consists in assuming a localized source where the reactive constituents are injected, at a rate that can be adjusted as a stepwise function of time. The linear problem obtained when operating in this setting allows one to recover a fair estimate of the underlying system size. Numerical experiments are carried so as to challenge the predictive ability of the theory.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M.E.J. Newman, Networks: An Introduction (OUP, Oxford, 2010) Google Scholar
  2. 2.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Barrat, M. Barthélemy, A. Vespignani, in Dynamical Processes on Complex Networks, 1st edn. (CUP, Cambridge, 2008) Google Scholar
  5. 5.
    G. Caldarelli, in Scale Free Networks: Complex Webs in Nature and Technology, 1st edn. (Oxford Finance Series, 2007) Google Scholar
  6. 6.
    J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    R. Sinatra, J. Gómez-Gardeñes, R. Lambiotte, V. Nicosia, V. Latora, Phys. Rev. E 83, 030103(R) (2011) ADSCrossRefGoogle Scholar
  8. 8.
    V. Nicosia, F. Bagnoli, V. Latora, Europhys. Lett. 94, 68009 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    N. Masuda, M.A. Porter, R. Lambiotte, Phys. Rep. 716–717, 1 (2017) CrossRefGoogle Scholar
  10. 10.
    S. Manfredi, E. Di Tucci, V. Latora, arxiv.1801.01332 (2017)
  11. 11.
    E. Schneidman, M.J. Berry, R. Segev, W. Bialek, Nature 440, 04701 (2006) CrossRefGoogle Scholar
  12. 12.
    S. Coccoa, S. Leiblerb, R. Monasson, PNAS 106, 14058 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    R. Burioni, M. Casartelli, M. di Volo, R. Livi, A. Vezzani, Sci. Rep. 4, 4336 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    M. di Volo, R. Burioni, M. Casartelli, R. Livi, A. Vezzani, Phys. Rev. E 90, 022811 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    M. di Volo, R. Burioni, M. Casartelli, R. Livi, A. Vezzani, Phys. Rev. E 93, 012305 (2016) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. Michiels van Kessenich, L. de Arcangelis, H.J. Herrmann, Sci. Rep. 6, 32071 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    R. Russo, H.J. Herrmann, L. de Arcangelis, Sci. Rep. 4, 4312 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    S.G. Shandilya, M. Timme, New J. Phys. 13, 013004 (2011) CrossRefGoogle Scholar
  19. 19.
    I. Malvestio, T. Kreuz, R.G. Andrzejak, Phys. Rev. E 96, 022203 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    M. Asllani, T. Carletti, F. Di Patti, D. Fanelli, F. Piazza, Phys. Rev. Lett. 120, 158301 (2018) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    T.M. Ligget, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, 1st edn. (Springer-Verlag, Berlin, 1999) Google Scholar
  22. 22.
    E. Almaas, R.V. Kulkarni, D. Stroud, Phys. Rev. E 68, 056105 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    S. Kwon, Y. Kim, Phys. Rev. E 84, 041103 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    D. Fanelli, A.J. Mckane, Phys. Rev. E 82, 021113 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    M. Galanti, D. Fanelli, F. Piazza, Front. Phys. 4, 33 (2016) CrossRefGoogle Scholar
  26. 26.
    A.E. Fernando, K.A. Landman, M.J. Simpson, Phys. Rev. E 81, 011903 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    K.A. Landman, A.E. Fernando, Physica A 390, 3742 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    M. Galanti, D. Fanelli, A. Maritan, F. Piazza, Europhys. Lett. 107, 20006 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    M. Galanti, S. Traytak, D. Fanelli, F. Piazza, Phys. Chem. Chem. Phys. 18, 15950 (2016) CrossRefGoogle Scholar
  30. 30.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    F. Pittorino, M. Ibanez Berganza, M. di Volo, A. Vezzani, R. Burioni, Phys. Rev. Lett. 118, 098102 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    G. Cencetti, F. Battiston, D. Fanelli, V. Latora, Phys. Rev. E 98, 052302 (2018) ADSCrossRefGoogle Scholar
  33. 33.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’Informazione, Università di FirenzeFlorenceItaly
  2. 2.Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, CSDC and INFNSesto FiorentinoItaly
  3. 3.Dipartimento di Fisica e Astronomia and CSDC, Università degli Studi di FirenzeSesto FiorentinoItaly
  4. 4.INFN Sezione di FirenzeSesto FiorentinoItaly
  5. 5.naXys, Namur Institute for Complex Systems, University of NamurNamurBelgium

Personalised recommendations