Advertisement

Wetting properties of LIPSS structured silicon surfaces

  • Olga VarlamovaEmail author
  • Juergen Reif
  • Michael Stolz
  • Rodica Borcia
  • Ion Dan Borcia
  • Michael Bestehorn
Regular Article
Part of the following topical collections:
  1. Topical issue: Non-Linear and Complex Dynamics in Semiconductors and Related Materials

Abstract

The controlled dynamics of liquid drops via generation of specific wetting states on a solid surface is of great interests both in the fundamental and applied sciences. Considering that the wettability is strongly dependent on the surface topography and surface roughness, we investigate – through experiments and theory – the effect of laser-induced periodic surface structures (LIPSS) generated on silicon (100) targets as a control parameter of wetting properties. To obtain structured silicon surfaces with different morphological features, we patterned the surface by irradiation with femtosecond pulses from an amplified Ti:Sapphire laser system (790 nm/100 fs/1 kHz) at a fluence in the range of 0.4–1.2 J/cm2 on a spot with a diameter about of 100 μm. Variation of the applied irradiation dose results in surface modifications with the roughness about of a few tens of nanometers are ranging from regular LIPSS patterns with the lateral period of about 500–700 nm to complex agglomerations of 3-D microstructures with several-μm feature size. The theoretical study on the correlation of wetting properties with the surface topography has been performed within a phase field model. We found an excellent agreement of numerical results with experiments.

Graphical abstract

References

  1. 1.
    A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    E. Stratakis, A. Ranella, C. Fotakis, Biomicrofluidics 5, 013411 (2011) CrossRefGoogle Scholar
  3. 3.
    M. Halbwax, T. Sarnet, Ph. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, S. Martinuzzi, Thin Solid Films 516, 6791 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    P. Neogi, C.A. Miller, J. Colloid Interface Sci. 92, 338 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    P. Lenz, R. Lipowsky, Phys. Rev. Lett. 80, 1920 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    C. Bauer, S. Dietrich, Phys. Rev. E 61, 1664 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    R. Konnur, K. Kargupta, A. Sharma, Phys. Rev. Lett. 84, 931 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    K. Kargupta, A. Sharma, J. Colloid Interface Sci. 245, 99 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    M. Brinkmann, R. Lipowsky, J. Appl. Phys. 92, 4296 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    U. Thiele, L. Brusch, M. Bestehorn, M. Bär, Eur. Phys. J. E 11, 255 (2003) CrossRefGoogle Scholar
  11. 11.
    H. Liu, J. Zhai, L. Jiang, Soft Matter 2, 811 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    H. Kusumaatmaja, R.J. Vrancken, C.W.M. Bastiaansen, Langmuir 24, 7299 (2008) CrossRefGoogle Scholar
  13. 13.
    N. Savva, S. Kalliadasis, Phys. Fluids 21, 092102 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    R. Vellingiri, N. Savva, S. Kalliadasis, Phys. Rev. E 84, 036305 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    S. Varagnolo, V. Schiocchet, D. Ferraro, M. Pierno, G. Mistura, M. Sbragaglia, A. Gupta, G. Amati, Langmuir 30, 2401 (2014) CrossRefGoogle Scholar
  16. 16.
    W.M. Feldman, I.C. Kim, Commun. Pur. Appl. Math. 71, 2429 (2018) CrossRefGoogle Scholar
  17. 17.
    H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    J.F. Young, J.S Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983) ADSCrossRefGoogle Scholar
  19. 19.
    T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Langmuir 22, 4917 (2006) CrossRefGoogle Scholar
  20. 20.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, C. Fotakis, Appl. Phys. A 93, 819 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    A.Y. Vorobyev, C. Guo, J. Appl. Phys. 117, 033103 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    O. Varlamova, K. Hoefner, M. Ratzke, J. Reif, D. Sarker, Appl. Phys. A 123, 725 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    A.Y. Vorobyev, C. Guo, Opti. Express 18, 6455 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    R. Borcia, M. Bestehorn, Phys. Rev. E 75, 056309 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 75, 066307 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    R. Borcia, S. Menzel, M. Bestehorn, S. Karpitschka, H. Riegler, Eur. Phys. J. E 34, 24 (2011) CrossRefGoogle Scholar
  27. 27.
    R. Borcia, M. Bestehorn, Langmuir 29, 4426 (2013) CrossRefGoogle Scholar
  28. 28.
    R. Borcia, I.D. Borcia, M. Bestehorn, Langmuir 30, 14113 (2014) CrossRefGoogle Scholar
  29. 29.
    R. Borcia, I.D. Borcia, M. Helbrig, M. Meier, Ch. Egbers, M. Bestehorn, Eur. Phys. J. Special Topics 226, 1297 (2017) ADSCrossRefGoogle Scholar
  30. 30.
    S. Razi, O. Varlamova, J. Reif, M. Bestehorn, S. Varlamov, M. Mollabashi, K. Madanipour, M. Ratzke, Opt. Laser Technol. 104, 8 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    J. Reif, O. Varlamova, S. Uhlig, S. Varlamov, M. Bestehorn, Appl. Phys. A 117, 179 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    T. Tomita, K. Kinoshita, S. Matsuo, S. Hashimoto, Jpn. J. Appl. Phys. 45, L444 (2006) ADSCrossRefGoogle Scholar
  34. 34.
    G. Miyaji, K. Miyazaki, Appl. Phys. Lett. 91, 123102 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    J. Reif, F. Costache, O. Varlamova, G. Jia, M. Ratzke, Phys. Status Solidi C 6, 681 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    J. Reif, O. Varlamova, M. Ratzke, M. Schade, H.S. Leipner, T. Arguirov, Appl. Phys. A 101, 361 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tuennermann, H. Welling, B. Wellegehausen, Opt. Commun. 129, 134 (1996) ADSCrossRefGoogle Scholar
  38. 38.
    J. Bonse, K.-W. Brzezinka, A.J. Meixner, Appl. Surf. Sci. 221, 215 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    O. Varlamova, M. Bounhalli, J. Reif, Appl. Surf. Sci. 278, 62 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    E.L. Gurevich, Phys. Rev. E 83, 031604 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    M. Morita, T. Koga, H. Otsuka, A. Takahara, Langmuir 21, 911 (2005) CrossRefGoogle Scholar
  42. 42.
    A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821 (2009) CrossRefGoogle Scholar
  43. 43.
    P. Bizi-Bandoki, S. Valette, E. Audouard, S. Benayoun, Appl. Surf. Sci. 273, 399 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    T. Young, Trans. Roy. Soc. 95, 65 (1805) ADSCrossRefGoogle Scholar
  45. 45.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936) CrossRefGoogle Scholar
  46. 46.
    P. Seppecher, Int. J. Eng. Sci. 34, 977 (1996) CrossRefGoogle Scholar
  47. 47.
    L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    B. Zoltowski, Y. Chekanov, J. Masere, J.A. Pojman, V. Volpert, Langmuir 23, 5522 (2007) CrossRefGoogle Scholar
  49. 49.
    A.G. Lamorgese, R. Mauri, Phys. Fluids 21, 044107 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    S. Madruga, G.S. Mischlich, Appl. Therm. Eng. 124, 1123 (2017) CrossRefGoogle Scholar
  51. 51.
    P.T. Yue, C.F. Zhou, J.J. Feng, J. Fluid Mech. 645, 279 (2010) ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    P. Yue, J.J. Feng, Eur. Phys. J. Special Topics 197, 37 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    M. Bestehorn, A. Firoozabadi, Phys. Fluids 24, 114102 (2012) ADSCrossRefGoogle Scholar
  54. 54.
    V.M. Starov, M.G. Velarde, C.J. Radke, in Wetting and spreading dynamics (CRC Press Taylor & Francis Group London, 2007), p. 11 Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Experimental Physics and Functional Materials, Brandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  2. 2.Fraunhofer Institute for Photonic Microsystems, Branch Integrated Silicon SystemsCottbusGermany
  3. 3.Statistical Physics and Nonlinear Dynamics, Brandenburg University of Technology Cottbus-SenftenbergCottbusGermany
  4. 4.Computational Physics, Brandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations