Advertisement

First principles study on the structural, electronic, magnetic and thermoelectric properties of CoX′NbGa (X′ = Cr, Mn, Fe) quaternary Heusler alloys

  • Namitha Anna Koshi
  • Rita JohnEmail author
Regular Article
  • 27 Downloads

Abstract

In this report, the structural, electronic, magnetic and thermoelectric properties of CoXNbGa (X = Cr, Mn, Fe) quaternary Heusler alloys are investigated using the full potential linearized augmented plane wave method in combination with the semi-classical Boltzmann transport theory. The exchange and correlation effects are treated using generalized gradient approximation and modified Becke-Johnson scheme. Our results reveal that CoCrNbGa and CoFeNbGa are half-metallic ferrimagnets satisfying the well-known Slater Pauling rule Mt = Zt − 24 from the analysis of electronic and magnetic properties. The half-metallic behaviour of CoCrNbGa and CoFeNbGa are robust against hydrostatic strain for a considerably wide range of lattice constants which makes them potential candidates for spintronic applications. CoMnNbGa is a non-magnetic 24 valence electron semiconductor and has better thermoelectric performance than CoCrNbGa and CoFeNbGa.

Graphical abstract

Keywords

Computational Methods 

Supplementary material

10051_2019_90663_MOESM1_ESM.pdf (796 kb)
First principles study on the structural, electronic, magnetic and thermoelectric properties of CoX′NbGa (X′ = Cr, Mn, Fe) quaternary Heusler alloys

References

  1. 1.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    L. Bainsla, K.G. Suresh, Appl. Phys. Rev. 3, 031101 (2016) ADSCrossRefGoogle Scholar
  3. 3.
    X. Wang, Z. Cheng, J. Wang, X. Wang, G. Liu, J. Mater. Chem. C 4, 7176 (2014) CrossRefGoogle Scholar
  4. 4.
    Y.W. Chai, T. Oniki, Y. Kimura, Acta Mater. 85, 290 (2015) CrossRefGoogle Scholar
  5. 5.
    S.W. Kim, Y. Kimura, Y. Mishima, Intermetallics 15, 349 (2007) CrossRefGoogle Scholar
  6. 6.
    T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1 (2011) CrossRefGoogle Scholar
  7. 7.
    M.K. Han, Y. Jin, D.H. Lee, S.J. Kim, Materials 10, 1235 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    H.W. Jeon, H.P. Ha, D.B. Hyun, J.D. Shim, J. Phys. Chem. Solids 52, 579 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Heremans, C.M. Thrush, D.T. Morelli, J. Appl. Phys. 98, 063703 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    X. Wang, H. Khachai, R. Khenata, H. Yuan, L. Wang, W. Wang, A. Bouhemadou, L. Hao, X. Dai, R. Guo, G. Liu, Z. Cheng, Sci. Rep. 7, 16183 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    S. Yousuf, D.C. Gupta, Mater. Sci. Eng. B 221, 73 (2017) CrossRefGoogle Scholar
  12. 12.
    T.M. Bhat, D.C. Gupta, J. Electr. Mater. 45, 6012 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    T.M. Bhat, D.C. Gupta, J. Magn. Magn. Mater. 449, 493 (2018) ADSCrossRefGoogle Scholar
  14. 14.
    V. Alijani et al., Phys. Rev. B 84, 224416 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    G.Y. Gao, L. Hu, K.L. Yao, B. Luo, N. Liu, J. Alloys Compd. 551, 539 (2013) CrossRefGoogle Scholar
  16. 16.
    Enamullah, Y. Venkateswara, S. Gupta, M.R. Varma, P. Singh, K.G. Suresh, A. Alam, Phys. Rev. B 92, 224413 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    K. Benkaddour et al., J. Alloys Compd. 687, 211 (2016) CrossRefGoogle Scholar
  18. 18.
    S. Berri, M. Ibrir, D. Maouche, M. Attallah, Comput. Condens. Matter 1, 26 (2014) CrossRefGoogle Scholar
  19. 19.
    R. Guo et al., RSC Adv. 6, 109394 (2016) CrossRefGoogle Scholar
  20. 20.
    A. Kundu et al., Sci. Rep. 7, 1803 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    D. Rani, Enamullah, K.G. Suresh, A.K. Yadav, S.N. Jha, D. Bhattacharya, M.R. Varma, A. Alam, Phys. Rev. B 96, 184404 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    P. Klaer, B. Balke, V. Alijani, J. Winterlik, G.H. Fecher, C. Felser, H.J. Elmers, Phys. Rev. B 84, 144413 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001) Google Scholar
  24. 24.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  25. 25.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    J. Drews, U. Eberz, H. Schuster, J. Less-Common Met. 116, 271 (1986) CrossRefGoogle Scholar
  29. 29.
    A. Kokalj, Comput. Mater. Sci. 28, 155 (2003) CrossRefGoogle Scholar
  30. 30.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944) ADSCrossRefGoogle Scholar
  31. 31.
    K. Özdoğan, E. Şaşioğlu, I. Galanakis, J. Appl. Phys. 113, 193903 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    L. Bainsla, A.I. Mallick, M.M. Raja, A.A. Coelho, A.K. Nigam, D.D. Johnson, A. Alam, K.G. Suresh, Phys. Rev. B 92, 045201 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    D. Koller, F. Tran, P. Blaha, Phys. Rev. B 85, 155109 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002) ADSCrossRefGoogle Scholar
  36. 36.
    N.A. Koshi, R. John, J. Supercond. Nov. Magn. (2018),  https://doi.org/10.1007/s10948-018-4780-y
  37. 37.
    D. Koller, F. Tran, P. Blaha, Phys. Rev. B 83, 195134 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    J.C. Slater, Phys. Rev. 49, 537 (1936) ADSCrossRefGoogle Scholar
  39. 39.
    L. Pauling, Phys. Rev. 54, 899 (1938) ADSCrossRefGoogle Scholar
  40. 40.
    A.S. Botana, P.M. Botta, C. de la Calle, A. Piẽiro, V. Pardo, D. Baldomir, J.A. Alonso, Phys. Rev. B 83, 184420 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    A.H. Reshak, RSC Adv. 6, 54001 (2016) CrossRefGoogle Scholar
  42. 42.
    S. Ouardi, B. Balke, A. Gloskovskii, G.H. Fecher, C. Felser, G. Schönhense, T. Ishikawa, T. Uemura, M. Yamamoto, H. Sukegawa, W. Wang, K. Inomata, Y. Yamashita, H. Yoshikawa, S. Ueda, K. Kobayashi, J. Phys. D: Appl. Phys. 42, 084010 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    M.L.C. Buffon, G. Laurita, L. Lamontagne, E.E. Levin, S. Mooraj, D.L. Lloyd, N. White, T.M. Pollock, R. Seshadri, J. Phys.: Condens. Matter 29, 405702 (2017) Google Scholar
  44. 44.
    L.L. Wang, L. Miao, Z.Y. Wang, W. Wei, R. Xiong, H.J. Liu, J. Shi, X.F. Tang, J. Appl. Phys. 105, 013709 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of Madras, Guindy CampusChennaiIndia

Personalised recommendations