Advertisement

Electrostatic chameleons: theory of intelligent metashells with adaptive response to inside objects

  • Liujun Xu
  • Jiping HuangEmail author
Regular Article
  • 27 Downloads

Abstract

The remarkable capability to tailor material property has largely expanded the permittivity range, even with negative value. However, permittivity, as an inherent property, may lack adaptive response to nearby objects. To solve this problem, here we introduce the chameleon behavior from biology to electrostatics. The essence of electrostatic chameleons can be concluded as intelligent metashells with adaptive response to inside objects. The requirement of electrostatic chameleons is deduced by making the effective permittivities of metashells only dependent on the permittivities of inside objects. By delicately designing the anisotropic permittivities of metashells, we summarize two types of electrostatic chameleons with distinct mechanisms. The theoretical analyses are validated by numerical simulations, which indicate that the proposed metashells do work as expected. Such schemes have potential applications in camouflage, self-adaption, etc. This work not only lays the theoretical foundation for electrostatic chameleons, but also provides guidance for exploring other intelligent materials beyond chameleon.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Micro. Theory 47, 2075 (1999) CrossRefGoogle Scholar
  3. 3.
    D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    J. Valentine, S. Zhang, T. Zentgraf, E.U. Avila, D.A. Genov, G. Bartal, X. Zhang, Nature 455, 376 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    L.H. Gao, Q. Cheng, J. Yang, S.J. Ma, J. Zhao, S. Liu, H.B. Chen, Q. He, W.X. Jiang, H.F. Ma, Q.Y. Wen, L.J. Liang, B.B. Jin, W.W. Liu, L. Zhou, J.Q. Yao, P.H. Wu, T.J. Cui, Light Sci. Appl. 4, e324 (2015) CrossRefGoogle Scholar
  9. 9.
    T.J. Cui, S. Liu, L.L. Li, Light Sci. Appl. 5, e16172 (2016) CrossRefGoogle Scholar
  10. 10.
    R.G. Peng, Z.Q. Xiao, Q. Zhao, F.L. Zhang, Y.G. Meng, B. Li, J. Zhou, Y.C. Fan, P. Zhang, N.H. Shen, T. Koschny, C.M. Soukoulis, Phys. Rev. X 7, 011033 (2017) Google Scholar
  11. 11.
    W.X. Jiang, C.Y. Luo, S. Ge, C.W. Qiu, T.J. Cui, Adv. Mater. 27, 4628 (2015) CrossRefGoogle Scholar
  12. 12.
    T.C. Han, Y.X. Liu, L. Liu, J. Qin, Y. Li, J.Y. Bao, D.Y. Ni, C.W. Qiu, Sci. Rep. 8, 12208 (2018) ADSCrossRefGoogle Scholar
  13. 13.
    T.Z. Yang, X. Bai, D.L. Gao, L.Z. Wu, B.W. Li, J.T.L. Thong, C.W. Qiu, Adv. Mater. 27, 7752 (2015) CrossRefGoogle Scholar
  14. 14.
    R. Mach-Batlle, C. Navau, A. Sancheza, Appl. Phys. Lett. 112, 162406 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    N.A. Nicorovici, R.C. Mcphedran, G.W. Milton, Phys. Rev. B 49, 8479 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    O. Levy, J. Appl. Phys. 77, 1696 (1995) ADSCrossRefGoogle Scholar
  17. 17.
    P.M. Hui, C. Xu, D. Stroud, Phys. Rev. B 69, 014203 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Huang, K.W. Yu, Phys. Rep. 431, 87 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    D.H. Liu, C. Xu, P.M. Hui, Appl. Phys. Lett. 92, 181901 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    S.Y. Park, D. Stroud, Appl. Phys. Lett. 85, 2920 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    S.Y. Park, D. Stroud, Phys. Rev. Lett. 94, 217401 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    A. Alu, N. Engheta, Phys. Rev. E 72, 016623 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    V. Levin, M. Markova, A. Mousatov, E. Kazatchenko, E. Pervago, Eur. Phys. J. B 90, 192 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    H.R. Ma, B.S. Zhang, W.Y. Tam, P. Sheng, Phys. Rev. B 61, 962 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    Y.L. Geng, X.B. Wu, L.W. Li, B.R. Guan, Phys. Rev. E 70, 056609 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    C.W. Qiu, L.W. Li, T.S. Yeo, S. Zouhdi, Phys. Rev. E 76, 039903 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    G.Q. Gu, E.B. Wei, Y.M. Poon, F.G. Shin, Phys. Rev. B 76, 064203 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    M. Cristea E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, A. Sanchez, Phys. Rev. Lett. 112, 253901 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    J.F. Zhu, W. Jiang, Y.C. Liu, G. Yin, J. Yuan, S.L. He, Y.G. Ma, Nat. Commun. 6, 8931 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    R.M. Batlle, A. Parra, S. Laut, N.D. Valle, C. Navau, A. Sanchez, Phys. Rev. Appl. 9, 034007 (2018) ADSCrossRefGoogle Scholar
  32. 32.
    J.C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. A 203, 385 (1904) ADSCrossRefGoogle Scholar
  33. 33.
    D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935) ADSCrossRefGoogle Scholar
  34. 34.
    F. Gomory, M. Solovyov, J. Souc, C. Navau, J.P. Camps, A. Sanchez, Science 335, 1466 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    W. Jiang, Y.G. Ma, S.L. He, Phys. Rev. Appl. 9, 054041 (2018) ADSCrossRefGoogle Scholar
  36. 36.
    Y. Lai, J. Ng, H.Y. Chen, D.Z. Han, J.J. Xiao, Z.Q. Zhang, C.T. Chan, Phys. Rev. Lett. 102, 253902 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsState Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan UniversityShanghaiP.R. China

Personalised recommendations