Advertisement

Palladium enriched tungsten oxide thin films: an efficient gas sensor for hazardous gases

  • Rhushikesh Godbole
  • Vijay Godbole
  • Sunita BhagwatEmail author
Regular Article
  • 13 Downloads

Abstract

Palladium enriched tungsten trioxide thin films were prepared by spraying solution of ammonium tungstate as a precursor on glass substrates using spray pyrolysis deposition technique. Palladium chloride as a precursor for palladium was introduced in the precursor solution during refluxing process before deposition. The catalyst Pd with different concentrations was introduced on series of WO3 films. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy were applied to analyze structure and morphology of the deposited thin films. The effect of Pd enrichment on the microstructure, electrical and gas sensing properties of the as-synthesized WO3 thin films was studied. Variation in the electrical conductivity of pure and Pd supplemented WO3 films was measured in air and in the presence of hazardous gases such as NO2, SO2 and NH3. The addition of 3 w/o Pd in WO3 raised the gas response of the film to 1.1 towards NO2 at lowest operating temperature of 100 °C. The film shows adequate response towards SO2 (0.32) and NH3 (0.27) at 200 °C and 225 °C, respectively. The response and recovery time ranged in 0.5–1.25 s and 1–6.7 s respectively even for high gas concentrations upto 750 ppm.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    T. Tesfamichael, C. Piloto, M. Arita, J. Bell, Sens. Actuators B 221, 393 (2015) CrossRefGoogle Scholar
  2. 2.
    V. Kruefu, A. Wisitsoraat, S. Phanichphant, J. Nanomater. 2015, 1 (2015) CrossRefGoogle Scholar
  3. 3.
    L. Zhu, W. Zheng, Sens. Actuators A 267, 242 (2017) CrossRefGoogle Scholar
  4. 4.
    L. Zhu, Y. Li, W. Zeng, Ceram. Int. 43, 14873 (2017) CrossRefGoogle Scholar
  5. 5.
    S.C. Moulzolf, S. Ding, R.J. Lad, Sens. Actuators B 77, 375 (2001) CrossRefGoogle Scholar
  6. 6.
    A. Rothschild, Y. Komem, J. Appl. Phys. 95, 6374 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    M.M.H. Bhuiyan, T. Ueda, T. Ikegami, K. Ebihara, Jpn. J. Appl. Phys. 45, 8469 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    G.M. Veith, A.R. Lupini, Catal. Today 122, 248 (2007) CrossRefGoogle Scholar
  9. 9.
    A. Cabot, J. Arbiol, J.R. Morante, Sens. Actuators B Chem. 70, 87 (2000) CrossRefGoogle Scholar
  10. 10.
    U. Opara, K. Ovec, B. Orel, A. Georg, V. Wittwer, Pergamon 68, 541 (2000) Google Scholar
  11. 11.
    A. Ruiz, J. Arbiol, A. Cirera, A. Cornet, J.R. Morante, Mater. Sci. Eng. C 19, 105 (2002) CrossRefGoogle Scholar
  12. 12.
    D.L. Moreno, D. Monzón-Hernández, Appl. Surf. Sci. 253, 8615 (2007) CrossRefGoogle Scholar
  13. 13.
    S. Fardindoost, A. Iraji zad, F. Rahimi, R. Ghasempour, Int. J. Hydrogen Energy 35, 854 (2010) CrossRefGoogle Scholar
  14. 14.
    M. Epifani, J. Abriol, E. Pellicer, E. Comini, P. Siciliano, G. Faglia, J.R. Morante, Cryst. Growth Des. 8, 1774 (2008) CrossRefGoogle Scholar
  15. 15.
    V.V. Malyshev, A.V. Pislyakov, Sens. Actuators B 134, 913 (2008) CrossRefGoogle Scholar
  16. 16.
    K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580 (2011) CrossRefGoogle Scholar
  17. 17.
    A. Ponka, M. Virtanen, Environ. Res. 65, 207 (1994) CrossRefGoogle Scholar
  18. 18.
    M. Bahu, K. Kumar, T. Bahu, J. Electron Devices 14, 1137 (2012) Google Scholar
  19. 19.
    A. Singh, M. Agrawal, J. Environ. Biol. 29, 15 (2008) Google Scholar
  20. 20.
    A Comparison of Relative Humidity Sensing Technologies, Hygrometrix. 20 Inc., Applications Note 2004-2, CA, USA, pp. 1–5 Google Scholar
  21. 21.
    F.D. Fonzo, A. Bailini, V. Russo, A. Baserga, D. Cattaneo, M.G. Beghi, P.M. Ossi, C.S. Casari, A. Li Bassi, C.E. Bottani, Catal. Today 116, 69 (2006) CrossRefGoogle Scholar
  22. 22.
    L. Zhou, Q. Ren, X. Zhou, J. Tang, Z. Chen, C. Yu, Microporous Mesoporous Mater. 109, 248 (2008) CrossRefGoogle Scholar
  23. 23.
    A. Baylet, P. Marécot, D. Duprez, P. Castellazzi, G. Groppi, P. Forzatti, Phys. Chem. Chem. Phys. 13, 4607 (2011) CrossRefGoogle Scholar
  24. 24.
    Y. Yu, Y. Xia, W. Zeng, R. Liu, Mater. Lett. 206, 80 (2017) CrossRefGoogle Scholar
  25. 25.
    R. Godbole, V.P. Godbole, S. Bhagwat, Mater. Sci. Semicond. Process. 63, 212 (2017) CrossRefGoogle Scholar
  26. 26.
    G. Li, R.L. Smith Jr. H. Inomata, K. Arai, Preparation techniques and ionic transport properties of ceria-based electrolytes, in Ionic and Mixed Conducting Ceramics IV, Electrochemical Society Proceedings, edited by T.A. Ramanarayanan (The Electrochemical Society, Inc., New Jersey, 2002), Vol. 2001-28, pp. 36–48 Google Scholar
  27. 27.
    S.L. Darshane, I.S. Mulla, Mater. Chem. Phys. 119, 319 (2010) CrossRefGoogle Scholar
  28. 28.
    S.S. Mehta, D.Y. Nadargi, M.S. Tamboli, L.S. Chaudhary, P.S. Patil, I.S. Mulla, S.S. Suryavanshi, Dalton Trans. 47, 16840 (2018) CrossRefGoogle Scholar
  29. 29.
    F.I. Shaikh, L.P. Chikhale, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi, J. Electron. Mater. 47, 3817 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    A.T. Mane, S.B. Kulkarni, S.T. Navale, A.A. Ghanwat, N.M. Shinde, J.H. Kim, V.B. Patil, Ceram. Int. 40, 16495 (2014) CrossRefGoogle Scholar
  31. 31.
    X. Wang, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, Sens. Actuators B 45, 141 (1997) CrossRefGoogle Scholar
  32. 32.
    V.V. Ganbavle, S.V. Mohite, G.L. Agawane, J.H. Kim, K.Y. Rajpure, J. Colloid Interface Sci. 451, 245 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    N. Izu, G. Hagen, D. Schönauer, U. Röder-Roith, R. Moos, Potential-type sulfur dioxide planar gas sensor for high temperature application, in Sensor + Test Conferences, Sensor Proceedings (AMA Publications, Nuremberg, 2011), pp. 538–542 Google Scholar
  34. 34.
    Y. Shimizu, N. Matsunaga, T. Hyodo, M. Egashira, Sens. Actuators B 77, 35 (2001) CrossRefGoogle Scholar
  35. 35.
    A. Reghu, D. Deniz, R. Stennett, G. Bernhardt, D. Frankel, R. Lad, J. Vetelino, WO3 sensor for ppb detection of ammonia, Metal Oxide-Based Gas Sensors V, in The 14th International Meeting on Chemical Sensors, Nuremberg, Germany, 2012, pp. 457–460 Google Scholar
  36. 36.
    A.S. Garde, Int. J. Chem. Phys. Sci. 5, 1 (2016) Google Scholar
  37. 37.
    M. Takács, Cs. Dücso, Z. Lábadi, A.E. Pap, Proc. Eng. 87, 1011 (2014) CrossRefGoogle Scholar
  38. 38.
    J. Patil, D. Nadargi, I.S. Mulla, S.S. Suryavanshi, Mater. Lett. 213, 27 (2018) CrossRefGoogle Scholar
  39. 39.
    J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla, S.S. Suryavanshi, Ceram. Int. 40, 10607 (2014) CrossRefGoogle Scholar
  40. 40.
    J.Y. Patil, D.Y. Nadargi, J.L. Gurav, I.S. Mulla, S.S. Suryavanshi, Mater. Lett. 124, 144 (2014) CrossRefGoogle Scholar
  41. 41.
    S. Mehta, D. Nadargi, M. Tamboli, V. Patil, I.S. Mulla, S.S. Suryavanshi, Ceram. Int. 45, 409 (2019) CrossRefGoogle Scholar
  42. 42.
    B.T. Marquis, J.F. Vetelino, Sens. Actuators B 77, 100 (2001) CrossRefGoogle Scholar
  43. 43.
    J.C. Belmonte, J. Manzano, J. Arbiol, A. Cirera, J. Puigcorbe, A. Vila, N. Sabate, I. Gracia, C. Cane, J.R. Morante, Sens. Actuators B 114, 881 (2006) CrossRefGoogle Scholar
  44. 44.
    C.V.G. Reddy, S.V. Manorama, V.J. Rao, J. Mater. Sci. Lett. 19, 775 (2000) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rhushikesh Godbole
    • 1
  • Vijay Godbole
    • 2
  • Sunita Bhagwat
    • 1
    Email author
  1. 1.Department of PhysicsAbasaheb Garware CollegeMaharashtraIndia
  2. 2.Department of PhysicsSavitribai Phule Pune UniversityGaneshkhindIndia

Personalised recommendations