Advertisement

Resonances and kinks in the electromagnetic radiation absorption in a graphene ring

  • Victor A. Margulis
  • Vitaly V. KarpuninEmail author
Regular Article
  • 12 Downloads

Abstract

An analytical expression of the absorption coefficient (AC) of the electromagnetic radiation in graphene rings placed in a magnetic field is obtained. Cases of a nondegenerate and a degenerate electron gas are considered. The dependences of the absorption coefficient on the frequency of the electromagnetic radiation and the magnitude of the magnetic field are investigated. It is shown that the absorption of the electromagnetic radiation has a resonant character. There are numerous peaks on the absorption curve due to the transitions between eigenstates of the electron spectrum. The AC curve contains kinks in the case of a degenerate gas.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    M. Zarenia, J. Milton Pereira, A. Chaves, F.M. Peeters, G.A. Farias, Phys. Rev. B 81, 045431 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    M. Zarenia, J. Milton Pereira, A. Chaves, F.M. Peeters, G.A. Farias, Phys. Rev. B 82, 119906 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, T. Kaplas, Y. Svirko et al., Appl. Phys. Lett. 108, 123101 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    H. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, S.A. Mikhailov, Phys. Rev. Lett. 105, 097401 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    H. Vinh Phuc, Superlattices Microstruct. 88, 518 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    H. Vinh Phuc, L. Dinh, Mater. Chem. Phys. 163, 116 (2015) CrossRefGoogle Scholar
  7. 7.
    C.V. Nguyen, N.N. Hieu, C.A. Duque, N.A. Poklonski, V.V. Ilyasov, N.V. Hieu, L. Dinh, Q.K. Quang, L.V. Tung, H.V. Phuc, Opt. Mater. 69, 328 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    S.V. Kryuchkov, E.I. Kukhar, Opt. Spectrosc. 112, 914 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    N.N. Yanushkina, M.B. Belonenko, N.G. Lebedev, Opt. Spectrosc. 112, 453 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    I.A. Reznik, Y.A. Gromova, A.S. Zlatov, M.A. Baranov, A.O. Orlova, S.A. Moshkalev, V.G. Maslov, A.V. Baranov, A.V. Fedorov, Opt. Spectrosc. 122, 114 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    F.E. Meijer, A.F. Morpurgo, T.M. Klapwijk, Phys. Rev. B 66, 033107 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, X. Yan, Phys. Chem. Chem. Phys. 18, 26661 (2016) CrossRefGoogle Scholar
  13. 13.
    L. Wendler, V.M. Fomin, A.V. Chaplik, Superlattices Microstruct. 16, 311 (1994) ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Chaplik, L.I. Magarill, Superlattices Microstruct. 18, 321 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    P. Recher, B. Trauzettel, A. Rycerz, Y.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    H.J.G. Meyer, Phys. Rev. 122, 298 (1958) ADSCrossRefGoogle Scholar
  17. 17.
    R. Rosenberg, M. Lax, Phys. Rev. 122, 843 (1958) ADSCrossRefGoogle Scholar
  18. 18.
    N.G. Galkin, V.A. Margulis, A.V. Shorokhov, Phys. Solid State 43, 530 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, in Integrals and Series (Gordon and Breach, New York, 1986), p. 800 Google Scholar
  20. 20.
    R.K. Bakanas, Sov. Phys. Solid State 12, 2769 (1970) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ogarev Mordovia State UniversitySaranskRussia
  2. 2.Evseviev Mordovia State Pedagogical InstituteSaranskRussia

Personalised recommendations