Advertisement

Nano-structured thin films growth in stochastic plasma-condensate systems

  • Vasyl O. KharchenkoEmail author
  • Alina V. Dvornichenko
Regular Article
  • 7 Downloads

Abstract

We have derived the stochastic model of plasma-condensate systems by taking into account anisotropy in transference of adatoms between neighbor layers and fluctuations of adsorbate flux. In the framework of stability analysis we have found that an increase in the fluctuation’s intensity leads to the homogenization of the adsorbate distribution in the system. By using numerical simulations we have shown, that by varying the fluctuation’s intensity one can control both dynamics of pattern formation in the system and morphology of the growing surface. It is found that with the noise intensity growth one gets morphological transformation from separated adsorbate islands on the substrate towards separated holes inside adsorbate matrix. It is shown that the introduced fluctuations lead to anomalous dynamics of the mean size of adsorbate islands growth. Statistical properties of the adsorbate/vacancy islands were studied in detail.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.A. Venables, G.D.T. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    A. Pimpinelli, J. Villian, Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998) Google Scholar
  3. 3.
    K. Pohl, M.C. Bartelt, J. de la Figuera et al., Nature 397, 238 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    Y.W. Mo, B.S. Swartzentruber, R. Kariotis, M.B. Webb, M.G. Lagally, Phys. Rev. Lett. 63, 2393 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    G.E. Cirlin, V.A. Egorov, L.V. Sokolov, P. Werner, Semiconductors 36, 1294 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Bucher, E. Hahn, P. Fernandez, C. Massobrio, K. Kern, Europhys. Lett. 27, 473 (1994) ADSCrossRefGoogle Scholar
  7. 7.
    V. Gorodetskii, J. Lauterbach, H.A. Rotermund et al., Nature 370, 276 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    K. Kern, H. Niehus, A. Schatz et al., Phys. Rev. Lett. 67, 855 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    T.M. Parker, L.K. Wilson, N.G. Condon, F.M. Leibsle, Phys. Rev. B 56, 6458 (1997) ADSCrossRefGoogle Scholar
  10. 10.
    H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature 394, 451 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    P.G. Clark, C.M. Friend, J. Chem. Phys. 111, 6991 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    V.I. Perekrestov, A.I. Olemskoi, Yu.O. Kosminska, A.A. Mokrenko, Phys. Lett. A 373, 3386 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Y.A. Kosminska, A.A. Mokrenko, V.I. Perekrestov, Tech. Phys. Lett. 37, 538 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    A.G. Zhiglinskiy, V.V. Kuchinskiy, Mass Transfer at an Interaction of Plasma with Surface (Energoizdat, Moscow, 1991) (in Russian) Google Scholar
  15. 15.
    V.O. Kharchenko, D.O. Kharchenko, V.V. Yanovsky, Nanoscale Res. Lett. 12, 337 (2017) Google Scholar
  16. 16.
    N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-, Amsterdam, 1992) Google Scholar
  17. 17.
    J. Garcia-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999) Google Scholar
  18. 18.
    D.O. Kharchenko, V.O. Kharchenko, I.O. Lysenko, Phys. Scr. 83, 045802 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    V.O. Kharchenko, D.O. Kharchenko, Phys. Rev. E 86, 041143 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    S.B. Casal, H.S. Wio, S. Mangioni, Physica A 311, 443 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    V.O. Kharchenko, D.O. Kharchenko, Surf. Sci. 637–638, 90 (2015) CrossRefGoogle Scholar
  22. 22.
    D. Walgraef, Physica E 18, 393 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    D. Walgraef, Int. J. Quant. Chem. 98, 248 (2004) CrossRefGoogle Scholar
  24. 24.
    V.O. Kharchenko, D.O. Kharchenko, S.V. Kokhan et al., Phys. Scr. 86, 055401 (2012) CrossRefGoogle Scholar
  25. 25.
    V.O. Kharchenko, D.O. Kharchenko, A.V. Dvornichenko, Surf. Sci. 630, 158 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    M. Hildebrand, A.S. Mikhailov, G. Ertl, Phys. Rev. Lett. 81, 2602 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    M. Hildebrand, A.S. Mikhailov, G. Ertl, Phys. Rev. E 58, 5483 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    V.O. Kharchenko, A.V. Dvornichenko, V.N. Borysiuk, Eur. Phys. J. B 91, 93 (2018) ADSCrossRefGoogle Scholar
  30. 30.
    J. Swift, P.C. Hohenberg, Phys. Rev. A 15, 319 (1977) ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Sancho, M. San Miguel, S.L. Katz, J.D. Gunton, Phys. Rev. A 26, 1589 (1982) ADSCrossRefGoogle Scholar
  32. 32.
    G.E.P. Box, M.E. Muller, Ann. Math. Stat. 29, 610 (1958) CrossRefGoogle Scholar
  33. 33.
    Y. Lei, A. Uhl, C. Becker et al., Phys. Chem. Chem. Phys. 12, 1264 (2010) CrossRefGoogle Scholar
  34. 34.
    X. Lai, T.P. St. Clair, D.W. Goodman, Faraday Discuss. 114 279 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics, National Academy of Sciences of UkraineSumyUkraine
  2. 2.Sumy State UniversitySumyUkraine

Personalised recommendations