Advertisement

Transmission from reverse reaction coordinate mappings

  • Niklas Martensen
  • Gernot SchallerEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Non-Linear and Complex Dynamics in Semiconductors and Related Materials

Abstract

We point out that the transport properties of non-interacting fermionic chains tunnel-coupled to two reservoirs at their ends can be mapped to those of a single quantum dot that is tunnel-coupled to two transformed reservoirs. The parameters of the chain are mapped to additional structure in the spectral densities of the transformed reservoirs. For example, this enables the calculation of the transmission of quantum dot chains by evaluating the known transmission of a single quantum dot together with structured spectral densities. We exemplify this analytically for short chains, which allows to optimize the transmission. In addition, we also demonstrate that the mapping can be performed numerically by computing the transmission of a Su-Schrieffer-Heeger chain.

Graphical abstract

References

  1. 1.
    C. Flindt, C. Fricke, F. Hohls, T. Novotny, K. Netocny, T. Brandes, R.J. Haug, PNAS 106, 10116 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    G. Schaller, G. Kießlich, T. Brandes, Phys. Rev. B 80, 245107 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    L.S. Levitov, G.B. Lesovik, JETP Lett. 58, 230 (1993) ADSGoogle Scholar
  4. 4.
    I. Klich, in NATO Science Series, edited by Y.V. Nazarov (Springer, Dordrecht, 2003), Vol. 97 Google Scholar
  5. 5.
    K. Schönhammer, Phys. Rev. B 75, 205329 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, 2008) Google Scholar
  7. 7.
    E.N. Economou, Green’s functions in quantum physics (Springer, Berlin, Heidelberg, 2006) Google Scholar
  8. 8.
    G.E. Topp, T. Brandes, G. Schaller, Europhys. Lett. 110, 67003 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    P. Zedler, G. Schaller, G. Kießlich, C. Emary, T. Brandes, Phys. Rev. B 80, 045309 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    R. Martinazzo, B. Vacchini, K.H. Hughes, I. Burghardt, J. Chem. Phys. 134, 011101 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    M.P. Woods, R. Groux, A.W. Chin, S.F. Huelga, M.B. Plenio, J. Math. Phys. 55, 032101 (2014) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Strasberg, G. Schaller, N. Lambert, T. Brandes, New J. Phys. 18, 073007 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    G. Schaller, J. Cerrillo, G. Engelhardt, P. Strasberg, Phys. Rev. B 97, 195104 (2018) ADSCrossRefGoogle Scholar
  14. 14.
    P. Strasberg, G. Schaller, T.L. Schmidt, M. Esposito, Phys. Rev. B 97, 205405 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    A. Nazir, G. Schaller, in Thermodynamics in the quantum regime – Recent progress and outlook, edited by F. Binder, L.A. Correa, C. Gogolin, J. Anders, G. Adesso (Springer, 2018) Google Scholar
  16. 16.
    L.S. Levitov, H. Lee, J. Math. Phys. 37, 4845 (1996) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957) CrossRefGoogle Scholar
  18. 18.
    S. Böhling, G. Engelhardt, G. Platero, G. Schaller, Phys. Rev. B 98, 035132 (2018) ADSCrossRefGoogle Scholar
  19. 19.
    B.K. Agarwalla, D. Segal, Phys. Rev. B 98, 155438 (2018) ADSCrossRefGoogle Scholar
  20. 20.
    A.C. Barato, U. Seifert, Phys. Rev. Lett. 114, 158101 (2015) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Pietzonka, A.C. Barato, U. Seifert, Phys. Rev. E 93, 052145 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    T.R. Gingrich, J.M. Horowitz, N. Perunov, J.L. England, Phys. Rev. Lett. 116, 120601 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Horowitz, T.R. Gingrich, Phys. Rev. E 96, 020103 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    P. Pietzonka, U. Seifert, Phys. Rev. Lett. 120, 190602 (2018) ADSCrossRefGoogle Scholar
  25. 25.
    G. Bulnes Cuetara, M. Esposito, G. Schaller, P. Gaspard, Phys. Rev. B 88, 115134 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    R.S. Burkey, C.D. Cantrell, J. Opt. Soc. Am. B 1, 169 (1984) ADSCrossRefGoogle Scholar
  27. 27.
    A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985) ADSCrossRefGoogle Scholar
  28. 28.
    U. Kleinekathöfer, J. Chem. Phys. 121, 2505 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979) ADSCrossRefGoogle Scholar
  30. 30.
    J.K. Asbóth, L. Oroszlány, A. Pályi, in Lecture Notes in Physics (Springer, Berlin, 2016), Vol. 919 Google Scholar
  31. 31.
    C.H. Lewenkopf, E.R. Mucciolo, J. Comput. Electr. 12, 203 (2013) CrossRefGoogle Scholar
  32. 32.
    P. Bonardi, S. Achilli, G.F. Tantardini, R. Martinazzo, Phys. Chem. Chem. Phys. 17, 18413 (2015) CrossRefGoogle Scholar
  33. 33.
    G. Schaller, P. Zedler, T. Brandes, Phys. Rev. A 79, 032110 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität BerlinBerlinGermany

Personalised recommendations