Advertisement

Rough infection fronts in a random medium

  • Alejandro B. Kolton
  • Karina LaneriEmail author
Regular Article
  • 13 Downloads

Abstract

We study extended infection fronts advancing over a spatially uniform susceptible population by solving numerically a diffusive Kermack McKendrick SIR model with a dichotomous spatially random transmission rate, in two dimensions. We find a non-trivial dynamic critical behavior in the mean velocity, in the shape, and in the rough geometry of the displacement field of the infective front as the disorder approaches a threshold value for spatial spreading of the infection.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

Supplementary material

References

  1. 1.
    S. Riley, K. Eames, V. Isham, D. Mollison, P. Trapman, Epidemics 10, 68 (2015) CrossRefGoogle Scholar
  2. 2.
    V. Romeo-Aznar, R. Paul, O. Telle, M. Pascual, Proc. R. Soc. Lond. B: Biol. Sci. 285, 20180826 (2018) CrossRefGoogle Scholar
  3. 3.
    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 115, 700 (1927) CrossRefGoogle Scholar
  4. 4.
    M.J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, 2008) Google Scholar
  5. 5.
    C.I. Siettos, L. Russo, Virulence 4, 295 (2013) CrossRefGoogle Scholar
  6. 6.
    Z. Wang, C.T. Bauch, S. Bhattacharyya, A. d’Onofrio, P. Manfredi, M. Perc, N. Perra, M. Salathé, D. Zhao, Phys. Rep. 664, 1 (2016) MathSciNetCrossRefGoogle Scholar
  7. 7.
    J.V. Noble, Nature 250, 08 (1974) CrossRefGoogle Scholar
  8. 8.
    J.D. Murray, in Mathematical Biology II: Spatial Models and Biomedical Application (Springer, New York, 2003), Vol. 18 Google Scholar
  9. 9.
    J.D. Murray, E.A. Stanley, D.L. Brown, Proc. R. Soc. Lond. B: Biol. Sci. 229, 111 (1986) CrossRefGoogle Scholar
  10. 10.
    T. Caraco, S. Glavanakov, G. Chen, J.E. Flaherty, T.K. Ohsumi, B.K. Szymanski, Am. Nat. 160, 348 (2002) Google Scholar
  11. 11.
    G. Abramson, V.M. Kenkre, T.L. Yates, R. Parmenter, Bull. Math. Biol. 65, 519 (2003) CrossRefGoogle Scholar
  12. 12.
    G. Lovett, C. Jones, M. Turner, K. Weathers, Ecosystem Function in Heterogeneous Landscapes (Springer, New York, 2005) Google Scholar
  13. 13.
    A.B. Juan, D.N. Carey, B.X. João, A.L. Simon, J. Stat. Phys. 144, 303 (2011) CrossRefGoogle Scholar
  14. 14.
    M. Roy, R.D. Zinck, M.J. Bouma, M. Pascual, Sci. Rep. 4, 3710 (2014) CrossRefGoogle Scholar
  15. 15.
    K. Capala, B. Dybiec, Eur. Phys. J. B 90, 85 (2017) CrossRefGoogle Scholar
  16. 16.
    S. Havlin, D. Ben-Avraham, Adv. Phys. 36, 695 (1987) CrossRefGoogle Scholar
  17. 17.
    J.-P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990) MathSciNetCrossRefGoogle Scholar
  18. 18.
    A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995) Google Scholar
  19. 19.
    M. Kardar, Phys. Rep. 301, 85 (1998) CrossRefGoogle Scholar
  20. 20.
    D.S. Fisher, Phys. Rep. 301, 113 (1998) CrossRefGoogle Scholar
  21. 21.
    J. Ferré, P.J. Metaxas, A. Mougin, J.-P. Jamet, J. Gorchon, V. Jeudy, C. R. Phys. 14, 651 (2013) CrossRefGoogle Scholar
  22. 22.
    E.E. Ferrero, S. Bustingorry, A.B. Kolton, A. Rosso, C. R. Phys. 14, 641 (2013) CrossRefGoogle Scholar
  23. 23.
    D.J.D. Earn, P. Rohani, B.M. Bolker, B.T. Grenfell, Science 287, 667 (2000) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  2. 2.Centro Atómico Bariloche (CNEA)BarilocheArgentina
  3. 3.Instituto Balseiro, Universidad Nacional de CuyoRío NegroArgentina

Personalised recommendations