Advertisement

Impact of awareness in metapopulation epidemic model to suppress the infected individuals for different graphs

  • K. M. Ariful KabirEmail author
  • Jun Tanimotoc
Regular Article
  • 17 Downloads

Abstract

The metapopulation dynamical model with information spreading in SIS epidemic diffusion model is presented for random walkers for sub-populations to display the effect of awareness. Two-layer SIS-UA (susceptible-infected-susceptible-unaware-aware) epidemic model is considered to reveal the effect of information spreading in a graph, where, each node denoted a sub-population. The individuals migrate by random walk from one node to another node on the graph by themselves or forcefully to escape from contagious disease. Moreover, the individuals in a node are classified into four states as unaware susceptible (US), aware susceptible (AS), unaware infected (UI) and aware infected (AI). Meanwhile, to study the impact of graph topology on individuals in each node (subpopulation), four different graphs: star, cycle, wheel and complete are considered as representing both homogeneous and heterogeneous connections with the various number of nodes. The influence of migration for information spreading is displayed to subdue infected individuals with time steps. Finally, several impressive cases in terms of what attributes of individuals in each subpopulation being allowed (or say, pushed) migration are considered, which is summarized in the form of a full phase diagram.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. Lond. A 115, 700 (1927) ADSCrossRefGoogle Scholar
  2. 2.
    I. Hanski, Nature 396, 5 (1998) CrossRefGoogle Scholar
  3. 3.
    M. Bonaventura, V. Nicosia, V. Latora, Phys. Rev. E 89, 12803 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    S. Meloni, N. Perra, A. Arenas, S. Gómez, Y. Moreno, A. Vespignani, Sci. Rep. 1, 62 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    A. Buscarino, L. Fortuna, M. Frasca, V. Latora, Europhys. Lett. 82, 38002 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    T. Nagatani, G. Ichinose, K. Tainaka, J. Phys. Soc. Jpn. 86, 113001 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    M. Draief, A. Ganesh, Discrete Event Dyn. Syst. 21, 41 (2011) MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Peterson, Stochastic Processes Appl. 121, 609 (2010) CrossRefGoogle Scholar
  9. 9.
    R. Durrett, S.A. Levin, Theor. Popul. Biol. 46, 363 (1994) CrossRefGoogle Scholar
  10. 10.
    T.E. Harries, Ann. Probab. 2, 969 (1974) CrossRefGoogle Scholar
  11. 11.
    C. Pu, S. Li, J. Yang, Physica A 432, 230 (2015) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    V. Colizza, A. Vespignani, J. Theor. Biol. 251, 450 (2008) CrossRefGoogle Scholar
  13. 13.
    T. Nagatani, G. Ichinose, K. Tainaka, J. Theor. Biol. 450, 66 (2018) CrossRefGoogle Scholar
  14. 14.
    K.M.A. Kabir, K. Kuga, J. Tanimoto, Chaos Solitons Fractals 119, 118 (2019) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K.M.A. Kabir, J. Tanimoto, Commun. Nonlinear Sci. Numer. Simul. 72, 565 (2019) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    K.M.A. Kabir, K. Kuga, J. Tanimoto, Chaos Solitons Fractals 119, 180 (2019) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Kuga, J. Tanimoto, J. Stat. Mech.: Theory Exp. 2018, 023407 (2018) CrossRefGoogle Scholar
  18. 18.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, UK, 2008) Google Scholar
  19. 19.
    S. Kwon, Y. Kim, Phys. Rev. E 84, 012813 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    H. Zhang, Z.H. Guan, T. Li, X.H. Zhang, D.X. Zhang, Physica A 392, 974 (2013) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Funk, M. Salathé, V.A.A. Jansen, J. R. Soc. Interface 7, 1247 (2010) CrossRefGoogle Scholar
  22. 22.
    C. Granell, S. Gómez, A. Arenas, Phys. Rev. E 90, 012808 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    C. Granell, S. Gómez, A. Arenas, Phys. Rev. Lett. 111, 12870 (2013) CrossRefGoogle Scholar
  24. 24.
    W. Wang, Q.H. Liu, S. Cai, M. Tang, A. Lidia, Braunstein, H.E. Stanley, Sci. Rep. 6, 29259 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    S. Funk, E. Gilad, C. Watkins, A. Vincent, A. Jansen, Proc. Natl. Acad. Sci. 106, 6872 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    Q. Wu, X. Fu, M. Small, X.J. Xu, Chaos 22, 013101 (2012) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. Pan, Z. Yan, Physica A 491, 45 (2018) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E. Fukuda, J. Tanimoto, M. Akimoto, Chaos Solitons Fractals 80, 47 (2015) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Moinet, R. Pastor-Satorras, A. Barrat, Phys. Rev. E 97, 012313 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Graduate School of Engineering Sciences, Kyushu UniversityFukuokaJapan
  2. 2.Department of MathematicsBangladesh University of Engineering and TechnologyDhakaBangladesh
  3. 3.Faculty of Engineering Sciences, Kyushu UniversityFukuokaJapan

Personalised recommendations