Advertisement

Probing magneto-elastic phenomena through an effective spin-bath coupling model

  • Thomas NussleEmail author
  • Pascal Thibaudeau
  • Stam Nicolis
Regular Article

Abstract

A phenomenological model is constructed, that captures the effects of coupling magnetic and elastic degrees of freedom, in the presence of external, stochastic perturbations, in terms of the interaction of magnetic moments with a bath, whose individual degrees of freedom cannot be resolved and only their mesoscopic properties are relevant. In the present work, the consequences of identifying the effects of dissipation as resulting from interactions with a bath of spins are explored, in addition to elastic, degrees of freedom. The corresponding stochastic differential equations are solved numerically and the moments of the magnetization are computed. The stochastic equations implicitly define a measure on the space of spin configurations, whose moments at equal times satisfy a hierarchy of deterministic, ordinary differential equations. Closure assumptions are used to truncate the hierarchy and the same moments are computed. We focus on the advantages and problems that each approach presents, for the approach to equilibrium and, in particular, the emergence of longitudinal damping.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    N. Smith, P. Arnett, Appl. Phys. Lett. 78, 1448 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    G. Bacher, A.A. Maksimov, H. Schömig, V.D. Kulakovskii, M.K. Welsch, A. Forchel, P.S. Dorozhkin, A.V. Chernenko, S. Lee, M. Dobrowolska, J.K. Furdyna, Phys. Rev. Lett. 89, 127201 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Crooker, D.G. Rickel, A.V. Balatsky, D.L. Smith, Nature 431, 49 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    C. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017) ADSCrossRefGoogle Scholar
  5. 5.
    D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions, 1st edn. Advanced book classics (Addison-Wesley, Reading, MA, 1994) Google Scholar
  6. 6.
    V. Kamberský, Czechoslovak J. Phys. B 26, 1366 (1976) ADSCrossRefGoogle Scholar
  7. 7.
    D.A. Garanin, Phys. Rev. B 55, 3050 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    P. Thibaudeau, T. Nussle, S. Nicolis, J. Magn. Magn. Mater. 432, 175 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    W.F. Brown, Phys. Rev. 130, 1677 (1963) ADSCrossRefGoogle Scholar
  10. 10.
    R. Kubo, N. Hashitsume, Prog. Theor. Phys. Suppl. 46, 210 (1970) ADSCrossRefGoogle Scholar
  11. 11.
    W. Brown, IEEE Trans. Magn. 15, 1196 (1979) ADSCrossRefGoogle Scholar
  12. 12.
    W.T. Coffey, Y.P. Kalmykov, J. Appl. Phys. 112, 121301 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    G. Bertotti, I.D. Mayergoyz, C. Serpico, Nonlinear Magnetization Dynamics in Nanosystems (Elsevier, 2009) Google Scholar
  14. 14.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983) ADSCrossRefGoogle Scholar
  15. 15.
    R. Zwanzig, J. Stat. Phys. 9, 215 (1973) ADSCrossRefGoogle Scholar
  16. 16.
    A. Rebei, G.J. Parker, Phys. Rev. B 67, 104434 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    E. Rossi, O.G. Heinonen, A.H. MacDonald, Phys. Rev. B 72, 174412 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    T. Nussle, P. Thibaudeau, S. Nicolis, J. Magn. Magn. Mater. 469, 633 (2019) ADSCrossRefGoogle Scholar
  19. 19.
    N. Prokof’ev, P. Stamp, Rep. Prog. Phys. 63, 669 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, G. Nardulli, Phys. Lett. B 299, 139 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    J. Tranchida, P. Thibaudeau, S. Nicolis, J. Phys.: Conf. Ser. 574, 012146 (2015) Google Scholar
  22. 22.
    G. Bertotti, C. Serpico, I.D. Mayergoyz, Phys. Rev. Lett. 86, 724 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    L.F. Álvarez, O. Pla, O. Chubykalo, Phys. Rev. B 61, 11613 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    S. Blanes, F. Casas, J.A. Oteo, J. Ros, Phys. Rep. 470, 151 (2009) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Krech, A. Bunker, D.P. Landau, Comput. Phys. Commun. 111, 1 (1998) ADSCrossRefGoogle Scholar
  26. 26.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics (Springer-Verlag, Berlin, Heidelberg, 2006) Google Scholar
  27. 27.
    P. Thibaudeau, D. Beaujouan, Physica A 391, 1963 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    H.G. Schuster, W. Just, Deterministic Chaos: An Introduction, 4th edn. (Wiley-, 2006) Google Scholar
  29. 29.
    E. Du Trémolet de Lacheisserie, Magnetostriction: theory and applications of magnetoelasticity (CRC Press, Boca Raton, 1993) Google Scholar
  30. 30.
    B. Skubic, J. Hellsvik, L. Nordström, O. Eriksson, J. Phys.:Condens. Matter 20, 315203 (2008) Google Scholar
  31. 31.
    N.G. Van Kampen, Phys. Rep. 24, 171 (1976) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    V.E. Shapiro, V.M. Loginov, Physica A 91, 563 (1978) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    V. Berdichevsky, M. Gitterman, Phys. Rev. E 60, 1494 (1999) ADSCrossRefGoogle Scholar
  34. 34.
    J. Tranchida, P. Thibaudeau, S. Nicolis, Physica B 486, 57 (2016) ADSCrossRefGoogle Scholar
  35. 35.
    K. Furutsu, J. Res. Natl. Bur. Stand. 67D, 303 (1963) Google Scholar
  36. 36.
    J. Tranchida, P. Thibaudeau, S. Nicolis, Phys. Rev. E 98, 042101 (2018) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Niederreiter, Random number generation and quasi-Monte Carlo methods. No. 63 in CBMS-NSF regional conference series in applied mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 1992) Google Scholar
  38. 38.
    J.C. Butcher, Numerical methods for ordinary differential equations, 3rd edn. (Wiley, Chichester, West Sussex, 2016) Google Scholar
  39. 39.
    H.H. Rosenbrock, Comput. J. 5, 329 (1963) MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Verner, SIAM J. Numer. Anal. 15, 772 (1978) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    C. Nicolis, G. Nicolis, Phys. Rev. E 58, 4391 (1998) ADSCrossRefGoogle Scholar
  42. 42.
    J. Kisker, L. Santen, M. Schreckenberg, H. Rieger, Phys. Rev. B 53, 6418 (1996) ADSCrossRefGoogle Scholar
  43. 43.
    M. Ney-Nifle, H.J. Hilhorst, Physica A 193, 48 (1993) ADSCrossRefGoogle Scholar
  44. 44.
    L. Šmejkal, J. Železný, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 118, 106402 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    K. Shen, G.E.W. Bauer, J. Phys. D 51, 224008 (2018) ADSCrossRefGoogle Scholar
  46. 46.
    S. Streib, H. Keshtgar, G.E. Bauer, Phys. Rev. Lett. 121, 027202 (2018) ADSCrossRefGoogle Scholar
  47. 47.
    L. Šmejkal, Y. Mokrousov, B. Yan, A.H. MacDonald, Nat. Phys. 14, 242 (2018) CrossRefGoogle Scholar
  48. 48.
    S.F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M. Gensch, A.M. Kalashnikova, R.V. Pisarev, M. Wolf, P.M. Oppeneer, J. Barker, T. Kampfrath, Sci. Adv. 4, eaar5164 (2018) ADSCrossRefGoogle Scholar
  49. 49.
    V.V. Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, K.A. Nelson, J. Optics 18, 093002 (2016) ADSCrossRefGoogle Scholar
  50. 50.
    D.G. Piliposyan, K.B. Ghazaryan, G.T. Piliposian, J. Appl. Phys. 116, 044107 (2014) ADSCrossRefGoogle Scholar
  51. 51.
    H. Sohn, C.y. Liang, M.E. Nowakowski, Y. Hwang, S. Han, J. Bokor, G.P. Carman, R.N. Candler, J. Magn. Magn. Mater. 439, 196 (2017) ADSCrossRefGoogle Scholar
  52. 52.
    M.N. Chernodub, M.A. Zubkov, Phys. Rev. B 95, 115410 (2017) ADSCrossRefGoogle Scholar
  53. 53.
    V. Arjona, M.A.H. Vozmediano, Phys. Rev. B 97, 201404 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CEA DAM/Le RipaultMontsFrance
  2. 2.Institut Denis Poisson, UMR CNRS 7013, Université de Tours, Université d’Orléans, Parc de GrandmontToursFrance

Personalised recommendations