Skip to main content
Log in

Probing magneto-elastic phenomena through an effective spin-bath coupling model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A phenomenological model is constructed, that captures the effects of coupling magnetic and elastic degrees of freedom, in the presence of external, stochastic perturbations, in terms of the interaction of magnetic moments with a bath, whose individual degrees of freedom cannot be resolved and only their mesoscopic properties are relevant. In the present work, the consequences of identifying the effects of dissipation as resulting from interactions with a bath of spins are explored, in addition to elastic, degrees of freedom. The corresponding stochastic differential equations are solved numerically and the moments of the magnetization are computed. The stochastic equations implicitly define a measure on the space of spin configurations, whose moments at equal times satisfy a hierarchy of deterministic, ordinary differential equations. Closure assumptions are used to truncate the hierarchy and the same moments are computed. We focus on the advantages and problems that each approach presents, for the approach to equilibrium and, in particular, the emergence of longitudinal damping.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Smith, P. Arnett, Appl. Phys. Lett. 78, 1448 (2001)

    Article  ADS  Google Scholar 

  2. G. Bacher, A.A. Maksimov, H. Schömig, V.D. Kulakovskii, M.K. Welsch, A. Forchel, P.S. Dorozhkin, A.V. Chernenko, S. Lee, M. Dobrowolska, J.K. Furdyna, Phys. Rev. Lett. 89, 127201 (2002)

    Article  ADS  Google Scholar 

  3. S.A. Crooker, D.G. Rickel, A.V. Balatsky, D.L. Smith, Nature 431, 49 (2004)

    Article  ADS  Google Scholar 

  4. C. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  Google Scholar 

  5. D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions, 1st edn. Advanced book classics (Addison-Wesley, Reading, MA, 1994)

  6. V. Kamberský, Czechoslovak J. Phys. B 26, 1366 (1976)

    Article  ADS  Google Scholar 

  7. D.A. Garanin, Phys. Rev. B 55, 3050 (1997)

    Article  ADS  Google Scholar 

  8. P. Thibaudeau, T. Nussle, S. Nicolis, J. Magn. Magn. Mater. 432, 175 (2017)

    Article  ADS  Google Scholar 

  9. W.F. Brown, Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

  10. R. Kubo, N. Hashitsume, Prog. Theor. Phys. Suppl. 46, 210 (1970)

    Article  ADS  Google Scholar 

  11. W. Brown, IEEE Trans. Magn. 15, 1196 (1979)

    Article  ADS  Google Scholar 

  12. W.T. Coffey, Y.P. Kalmykov, J. Appl. Phys. 112, 121301 (2012)

    Article  ADS  Google Scholar 

  13. G. Bertotti, I.D. Mayergoyz, C. Serpico, Nonlinear Magnetization Dynamics in Nanosystems (Elsevier, 2009)

  14. A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  15. R. Zwanzig, J. Stat. Phys. 9, 215 (1973)

    Article  ADS  Google Scholar 

  16. A. Rebei, G.J. Parker, Phys. Rev. B 67, 104434 (2003)

    Article  ADS  Google Scholar 

  17. E. Rossi, O.G. Heinonen, A.H. MacDonald, Phys. Rev. B 72, 174412 (2005)

    Article  ADS  Google Scholar 

  18. T. Nussle, P. Thibaudeau, S. Nicolis, J. Magn. Magn. Mater. 469, 633 (2019)

    Article  ADS  Google Scholar 

  19. N. Prokof’ev, P. Stamp, Rep. Prog. Phys. 63, 669 (2000)

    Article  ADS  Google Scholar 

  20. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, G. Nardulli, Phys. Lett. B 299, 139 (1993)

    Article  ADS  Google Scholar 

  21. J. Tranchida, P. Thibaudeau, S. Nicolis, J. Phys.: Conf. Ser. 574, 012146 (2015)

    Google Scholar 

  22. G. Bertotti, C. Serpico, I.D. Mayergoyz, Phys. Rev. Lett. 86, 724 (2001)

    Article  ADS  Google Scholar 

  23. L.F. Álvarez, O. Pla, O. Chubykalo, Phys. Rev. B 61, 11613 (2000)

    Article  ADS  Google Scholar 

  24. S. Blanes, F. Casas, J.A. Oteo, J. Ros, Phys. Rep. 470, 151 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Krech, A. Bunker, D.P. Landau, Comput. Phys. Commun. 111, 1 (1998)

    Article  ADS  Google Scholar 

  26. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer Series in Computational Mathematics (Springer-Verlag, Berlin, Heidelberg, 2006)

  27. P. Thibaudeau, D. Beaujouan, Physica A 391, 1963 (2012)

    Article  ADS  Google Scholar 

  28. H.G. Schuster, W. Just, Deterministic Chaos: An Introduction, 4th edn. (Wiley-, 2006)

  29. E. Du Trémolet de Lacheisserie, Magnetostriction: theory and applications of magnetoelasticity (CRC Press, Boca Raton, 1993)

  30. B. Skubic, J. Hellsvik, L. Nordström, O. Eriksson, J. Phys.:Condens. Matter 20, 315203 (2008)

    Google Scholar 

  31. N.G. Van Kampen, Phys. Rep. 24, 171 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. V.E. Shapiro, V.M. Loginov, Physica A 91, 563 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  33. V. Berdichevsky, M. Gitterman, Phys. Rev. E 60, 1494 (1999)

    Article  ADS  Google Scholar 

  34. J. Tranchida, P. Thibaudeau, S. Nicolis, Physica B 486, 57 (2016)

    Article  ADS  Google Scholar 

  35. K. Furutsu, J. Res. Natl. Bur. Stand. 67D, 303 (1963)

    Google Scholar 

  36. J. Tranchida, P. Thibaudeau, S. Nicolis, Phys. Rev. E 98, 042101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Niederreiter, Random number generation and quasi-Monte Carlo methods. No. 63 in CBMS-NSF regional conference series in applied mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 1992)

  38. J.C. Butcher, Numerical methods for ordinary differential equations, 3rd edn. (Wiley, Chichester, West Sussex, 2016)

  39. H.H. Rosenbrock, Comput. J. 5, 329 (1963)

    Article  MathSciNet  Google Scholar 

  40. J. Verner, SIAM J. Numer. Anal. 15, 772 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Nicolis, G. Nicolis, Phys. Rev. E 58, 4391 (1998)

    Article  ADS  Google Scholar 

  42. J. Kisker, L. Santen, M. Schreckenberg, H. Rieger, Phys. Rev. B 53, 6418 (1996)

    Article  ADS  Google Scholar 

  43. M. Ney-Nifle, H.J. Hilhorst, Physica A 193, 48 (1993)

    Article  ADS  Google Scholar 

  44. L. Šmejkal, J. Železný, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 118, 106402 (2017)

    Article  ADS  Google Scholar 

  45. K. Shen, G.E.W. Bauer, J. Phys. D 51, 224008 (2018)

    Article  ADS  Google Scholar 

  46. S. Streib, H. Keshtgar, G.E. Bauer, Phys. Rev. Lett. 121, 027202 (2018)

    Article  ADS  Google Scholar 

  47. L. Šmejkal, Y. Mokrousov, B. Yan, A.H. MacDonald, Nat. Phys. 14, 242 (2018)

    Article  Google Scholar 

  48. S.F. Maehrlein, I. Radu, P. Maldonado, A. Paarmann, M. Gensch, A.M. Kalashnikova, R.V. Pisarev, M. Wolf, P.M. Oppeneer, J. Barker, T. Kampfrath, Sci. Adv. 4, eaar5164 (2018)

    Article  ADS  Google Scholar 

  49. V.V. Temnov, I. Razdolski, T. Pezeril, D. Makarov, D. Seletskiy, A. Melnikov, K.A. Nelson, J. Optics 18, 093002 (2016)

    Article  ADS  Google Scholar 

  50. D.G. Piliposyan, K.B. Ghazaryan, G.T. Piliposian, J. Appl. Phys. 116, 044107 (2014)

    Article  ADS  Google Scholar 

  51. H. Sohn, C.y. Liang, M.E. Nowakowski, Y. Hwang, S. Han, J. Bokor, G.P. Carman, R.N. Candler, J. Magn. Magn. Mater. 439, 196 (2017)

    Article  ADS  Google Scholar 

  52. M.N. Chernodub, M.A. Zubkov, Phys. Rev. B 95, 115410 (2017)

    Article  ADS  Google Scholar 

  53. V. Arjona, M.A.H. Vozmediano, Phys. Rev. B 97, 201404 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nussle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nussle, T., Thibaudeau, P. & Nicolis, S. Probing magneto-elastic phenomena through an effective spin-bath coupling model. Eur. Phys. J. B 92, 29 (2019). https://doi.org/10.1140/epjb/e2019-90539-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90539-6

Keywords

Navigation