Advertisement

Multi-choice opinion dynamics model based on Latané theory

  • Przemysław Bańcerowski
  • Krzysztof MalarzEmail author
Open Access
Regular Article
  • 88 Downloads

Abstract

In this paper Nowak–Szamrej–Latané model is reconsidered. This computerised model of opinion formation bases on Latané theory of social impact. We modify this model to allow for multi (more than two) opinions. With computer simulations we show that in the modified model the signatures of order/disorder phase transition are still observed. The transition may be observed in the average fraction of actors sharing the ith opinion, its variation and also average number of clusters of actors with the same opinion and the average size of the largest cluster of actors sharing the same opinion. Also an influence of model control parameters on simulation results is shortly reviewed. For a homogeneous society with identical actors’ supportiveness and persuasiveness the critical social temperature TC decreases with an increase of the number of available opinions K from TC = 6.1 (K = 2) via 4.7, 4.1 to TC = 3.6 for K = 3, 4, 5, respectively. The social temperature plays a role of a standard Boltzmann distribution parameter containing social impact as the equivalent of energy or one may think about it just as on a noise parameter.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

Notes

Author contribution statement

P. Bańcerowski and K. Malarz conceived the study and analysed the results. P. Bańcerowski performed the simulation. K. Malarz wrote the manuscript.

References

  1. 1.
    D. Stauffer, inEncyclopedia of Complexity and Systems Science, edited by R.A. Meyers (Springer, New York, NY, 2009), p. 6380 Google Scholar
  2. 2.
    S. Galam, Int. J. Mod. Phys. C 19, 409 (2008) ADSGoogle Scholar
  3. 3.
    S. Galam, Physica A 336, 49 (2004) ADSGoogle Scholar
  4. 4.
    C. Gros, Eur. Phys. J. B 90, 223 (2017) ADSGoogle Scholar
  5. 5.
    P. Nyczka, K. Sznajd-Weron, J. Stat. Phys. 151, 174 (2013) ADSMathSciNetGoogle Scholar
  6. 6.
    K. Kułakowski, Physica A 388, 469 (2009) ADSGoogle Scholar
  7. 7.
    S. Gekle, L. Peliti, S. Galam, Eur. Phys. J. B 45, 569 (2005) ADSGoogle Scholar
  8. 8.
    K. Sznajd-Weron, J. Sznajd, Physica A 351, 593 (2005) ADSGoogle Scholar
  9. 9.
    F. Amblard, G. Deffuant, Physica A 343, 725 (2004) ADSGoogle Scholar
  10. 10.
    J.A. Hołyst, K. Kacperski, F. Schweitzer, Physica A 285, 199 (2000) ADSGoogle Scholar
  11. 11.
    K. Kacperski, J.A. Hołyst, Physica A 287, 631 (2000) ADSGoogle Scholar
  12. 12.
    J.-D. Mathias, S. Huet, G. Deffuant, J. Artif. Soc. Soc. Simul. 19(1), 6 (2016) Google Scholar
  13. 13.
    K. Malarz, P. Gronek, K. Kułakowski, J. Artif. Soc. Soc. Simul. 14(1), 2 (2011) Google Scholar
  14. 14.
    G. Deffuant, J. Artif. Soc. Soc. Simul. 9(3), 8 (2006) Google Scholar
  15. 15.
    R. Hegselmann, U. Krause, J. Artif. Soc. Soc. Simul. 5(3), 2 (2002) Google Scholar
  16. 16.
    T. Feliciani, A. Flache, J. Tolsma, J. Artif. Soc. Soc. Simul. 20(2), 6 (2017) Google Scholar
  17. 17.
    J. Li, R. Xiao, J. Artif. Soc. Soc. Simul. 20(2), 4 (2017) Google Scholar
  18. 18.
    P. Duggins, J. Artif. Soc. Soc. Simul. 20(1), 13 (2017) Google Scholar
  19. 19.
    W. Lenz, Phys. Z. 21, 613 (1920) Google Scholar
  20. 20.
    E. Ising, Phys. Z. 31, 253 (1925) ADSGoogle Scholar
  21. 21.
    K. Malarz, K. Kułakowski, Acta Phys. Pol. A 114, 581 (2008) ADSGoogle Scholar
  22. 22.
    F. Slanina, K. Sznajd-Weron, P. Przybyla, Europhys. Lett. 82, 18006 (2008) ADSGoogle Scholar
  23. 23.
    K. Sznajd-Weron, Acta Phys. Pol. B 36, 2537 (2005) ADSGoogle Scholar
  24. 24.
    K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000) ADSGoogle Scholar
  25. 25.
    K. Malarz, K. Kułakowski, Acta Phys. Pol. A 117, 695 (2010) Google Scholar
  26. 26.
    G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Adv. Complex Syst. 3, 87 (2000) Google Scholar
  27. 27.
    F.W.S. Lima, Front. Phys. 5, 47 (2017) Google Scholar
  28. 28.
    K. Malarz, Int. J. Mod. Phys. C 17, 1521 (2006) ADSGoogle Scholar
  29. 29.
    F. Baccelli, A. Chatterjee, S. Vishwanath, IEEE Trans. Autom. Control. 62, 5678 (2017) Google Scholar
  30. 30.
    W. Su, G. Chen, Y. Hong, Automatica 85, 448 (2017) Google Scholar
  31. 31.
    Y. Zhu, Q.A. Wang, W. Li, X. Cai, J. Stat. Mech. Theory Exp.2017, 093401 (2017) Google Scholar
  32. 32.
    C. Anteneodo, N. Crokidakis, Phys. Rev. E 95, 042308 (2017) ADSGoogle Scholar
  33. 33.
    G. Chen, H. Cheng, C. Huang, W. Han, Q. Dai, H. Li, J. Yang, Phys. Rev. E 95, 042118 (2017) ADSGoogle Scholar
  34. 34.
    Y. Zhang, Q. Liu, S. Zhang, PLoS ONE 12, e0172982 (2017) Google Scholar
  35. 35.
    K. Malarz, K. Kułakowski, Europhys. News 45, 21 (2014) Google Scholar
  36. 36.
    K. Malarz, K. Kułakowski, Acta Phys. Pol. A 121, B86 (2012) Google Scholar
  37. 37.
    F.W.S. Lima, N. Crokidakis, Int. J. Mod. Phys. C 28, 1750123 (2017) ADSGoogle Scholar
  38. 38.
    Y. Li, H. Cao, G. Wen, Simulation 93, 899 (2017) Google Scholar
  39. 39.
    H. Alatas, S. Nurhimawan, F. Asmat, H. Hardhienata, Chaos Solitons Fractals 101, 24 (2017) ADSGoogle Scholar
  40. 40.
    M.G. Medina-Guevara, J.E. Macias-Diaz, A. Gallegos, H. Vargas-Rodriguez, Int. J. Mod. Phys. C 28, 1750058 (2017) ADSGoogle Scholar
  41. 41.
    S.E. Parsegov, A.V. Proskurnikov, R. Tempo, N.E. Friedkin, IEEE Trans. Autom. Control 62, 2270 (2017) Google Scholar
  42. 42.
    G. Albi, L. Pareschi, M. Zanella, Kinet. Relat. Mod. 10, 1 (2017) Google Scholar
  43. 43.
    F. Xiong, Y. Liu, J. Cheng, Commun. Nonlinear Sci. Numer. Simul. 44, 513 (2017) Google Scholar
  44. 44.
    L.C. Evans, Partial Differential Equations, Graduate studies in mathematics, 2nd edn. (American Mathematical Society, 2010) Google Scholar
  45. 45.
    R. Hegselmann, A. Flache, V. Möller, inTools and Techniques for Social Science Simulation, edited by R. Suleiman, K.G. Troitzsch, N. Gilbert (Physica, 2000), p. 151 Google Scholar
  46. 46.
    A. Ilachinski,Cellular Automata: A Discrete Universe (World Scientific, 2001) Google Scholar
  47. 47.
    S. Wolfram,A New Kind of Science (Wolfram Media, 2002) Google Scholar
  48. 48.
    B. Chopard, M. Droz,Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 2005) Google Scholar
  49. 49.
    B. Chopard, inComputational Complexity: Theory, Techniques, and Applications, edited by R.A. Meyers (Springer, New York, NY, 2012), p. 407 Google Scholar
  50. 50.
    A. Abramiuk, J. Pawłowski, K. Sznajd-Weron, Entropy 21, 521 (2019) ADSGoogle Scholar
  51. 51.
    A. Jedrzejewski, K. Sznajd-Weron, C.R. Phys. (2019), Google Scholar
  52. 52.
    A.R. Vieira, C. Anteneodo, Phys. Rev. E 97, 052106 (2018) ADSGoogle Scholar
  53. 53.
    B. Nowak, K. Sznajd-Weron, Complexity 2019, 5150825 (2019) Google Scholar
  54. 54.
    A. Jedrzejewski, G. Marcjasz, P.R. Nail, K. Sznajd-Weron, PLoS ONE 13, e0206166 (2018) Google Scholar
  55. 55.
    A. Jedrzejewski, K. Sznajd-Weron, Physica A 505, 306 (2018) ADSGoogle Scholar
  56. 56.
    A. Nowak, J. Szamrej, B. Latané, Psychol. Rev. 97, 362 (1990) Google Scholar
  57. 57.
    B. Latané, S. Harkins, Percept. Psychophys. 20, 482 (1976) Google Scholar
  58. 58.
    B. Latané, S. Nida, Psychol. Bull. 89, 308 (1981) Google Scholar
  59. 59.
    B. Latané, Am. Psychol. 36, 343 (1981) Google Scholar
  60. 60.
    J.A. Hołyst, K. Kacperski, F. Schweitzer, inAnnual Reviews of Computational Physics IX, edited by D. Stauffer (World Scientific, Singapore, 2011), p. 253 Google Scholar
  61. 61.
    H.B. Gerard, R.A. Wilhelmy, E.S. Conolley, J. Personal. Soc. Psychol. 8, 79 (1968) Google Scholar
  62. 62.
    S.E. Asch, Sci. Am. 193, 31 (1955) ADSGoogle Scholar
  63. 63.
    S. Milgram, L. Bickman, L. Berkowitz, J. Personal. Soc. Psychol. 13, 79 (1969) Google Scholar
  64. 64.
    J.M. Darley, B. Latané, J. Personal. Soc. Psychol. 8, 377 (1968) Google Scholar
  65. 65.
    M. Gansberg, “37 who saw murder didn’t call the police; Apathy at stabbing of queens woman shocks inspector”, New York Times (March 27, 1964), p. 1 Google Scholar
  66. 66.
    R. Manning, M. Levine, A. Collins, Am. Psychol. 62, 555 (2007) Google Scholar
  67. 67.
    K. Kułakowski, arXiv:0807.0711 (2008)
  68. 68.
    L.M. Floría, C. Gracia-Lázaro, J. Gómez-Gardeñes, Y. Moreno, Phys. Rev. E 79, 026106 (2009) ADSGoogle Scholar
  69. 69.
    M.J. de Oliveira, J. Stat. Phys. 66, 273 (1992) ADSGoogle Scholar
  70. 70.
    P. Bańcerowski, Master’s thesis, AGH University of Scienceand Technology, Kraków, 2017, in Polish Google Scholar
  71. 71.
    S.P. Anderson, A. De Palma, J.F. Thisse,Discrete Choice Theory of Product Differentiation (MIT Press, Cambridge, MA, 1992) Google Scholar
  72. 72.
    K. Byrka, A. Jedrzejewski, K. Sznajd-Weron, R. Weron, Renew. Sustain. Energy Rev. 62, 723 (2016) Google Scholar
  73. 73.
    R. Likert, Arch. Psychol. 22, 1 (1932) Google Scholar
  74. 74.
    S.S. Stevens, Science 103, 677 (1946) ADSGoogle Scholar
  75. 75.
    R.B. Potts, Math. Proc. Cambridge Philos. Soc. 48, 106 (1952) ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.AGH University of Science and Technology, Faculty of Physics and Applied Computer ScienceKrakowPoland

Personalised recommendations