Advertisement

Aging continuous time random walks with AB reaction

  • Hong ZhangEmail author
  • Guo-hua Li
  • Bao Zhang
Regular Article
  • 23 Downloads

Abstract

Aging continuous time random walk (ACTRW) which describes a dynamical process starting at time − ta before the first measurement at t = 0 attracts more and more attentions in recent years. To describe the aging behaviors of reactive particles in anomalous diffusion process in disordered medium, in this paper we introduce a new ACTRW model with simple AB reaction, and obtain the corresponding generalized Montroll-Weiss equations in Fourier-Laplace space for the densities of A and B particles. As an example, we solve the densities for the reactants for power law waiting time and Gaussian jump length, obtain the corresponding fractional aging reaction diffusion equations, and show the dependence of anomalous diffusion of reactants on the age of the process and the reaction rate.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Metzler, I.M. Sokolov, Europhys. Lett. 58, 482 (2002) CrossRefGoogle Scholar
  2. 2.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2002) CrossRefGoogle Scholar
  3. 3.
    E. Barkai, Y.C. Cheng, J. Chem. Phys. 118, 6167 (2003) CrossRefGoogle Scholar
  4. 4.
    V. Yu. Zaburdaev, J. Stat. Phys. 133, 159 (2008) MathSciNetCrossRefGoogle Scholar
  5. 5.
    I.M. Sokolov, M.G.W. Schmidt, F. Sagués, Phys. Rev. E 73, 031102 (2006) CrossRefGoogle Scholar
  6. 6.
    D. Froemberg, I.M. Sokolov, Phys. Rev. Lett. 100, 108304 (2008) CrossRefGoogle Scholar
  7. 7.
    D. Campos, V. Méndez, Phys. Rev. E 80, 021133 (2009) CrossRefGoogle Scholar
  8. 8.
    E. Abad, Y.S. Yuste, K. Lindenberg, Phys. Rev. E 81, 031115 (2010) CrossRefGoogle Scholar
  9. 9.
    C.N. Angstmann, I.C. Donnelly, B.I. Henry, Math. Model. Nat. Phenom. 8, 17 (2013) MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.V. Chechkin, H. Kantz, R. Metzler, Eur. Phys. J. B 90, 205 (2017) CrossRefGoogle Scholar
  11. 11.
    S. Fedotov, S. Falconer, Phys. Rev. E 85, 031132 (2012) CrossRefGoogle Scholar
  12. 12.
    T.A.M. Langlands, B.I. Henry, S.L. Wearne, Phys. Rev. E 77, 021111 (2008) MathSciNetCrossRefGoogle Scholar
  13. 13.
    M.G.W. Schmidt, F. Sagués, I.M. Sokolov, J. Phys.: Condens. Matter 19, 065118 (2007) Google Scholar
  14. 14.
    K.S. Miller, R. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993) Google Scholar
  15. 15.
    D.H. Deng, W.L. Wang, X.C. Tian, Y.J. Wu, J. Stat. Phys. 164, 377 (2016) MathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Barkai, Phys. Rev. Lett. 90, 104101 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geomathematics Key Laboratory of Sichuan Province, Chengdu University of TechnologyCheng’duP.R. China
  2. 2.Department of MathematicsDali Prefecture Experimental Middle SchoolDaliP.R. China

Personalised recommendations