Advertisement

Ab initio investigation of structural and electronic properties of selenium and tellurium clusters

  • Tamanna Sharma
  • Raman SharmaEmail author
  • Rohit A. Tamboli
  • Dilip Govind Kanhere
Regular Article
  • 23 Downloads

Abstract

Structural and electronic properties of selenium (Sen; n = 8–31, 35 and 40) and tellurium clusters (Ten; n = 6–24, 30 and 32) have been investigated within the framework of density functional formalism. Genetic algorithm based code USPEX and molecular dynamics have been used to obtain at least 70 distinct equilibrium geometries for each cluster. Strikingly, all the ground state geometries as well as a few low energy structures are ring like, closed one dimensional structures. Despite the fact that the small clusters of these elements tend to have one dimensional geometries, it is unusual to have such stable ring geometries for large clusters of the order of 40 atoms. Our work brings out a very interesting trend of order–disorder–order transitions in the growth pattern of these clusters. Although, the size of the ring increases with an increase in number of atoms, the variation in the bond angles and bond lengths is rather small. Remarkably, binding energy per atom is almost constant. The nature of bonding has been analyzed by examining individual charge densities of all the molecular orbitals. It turns out that the amount of buckling and the angle between three adjacent atoms involved along the ring plays a crucial role in forming covalent bonds in a variety of ways. The pattern of Eigenvalues of all the clusters show a very interesting character. The “bands” are formed out of almost pure atomic orbitals with negligible hybridization between s and p. The lowest n energy levels show text book like tight binding character having constant width. The manifold of p bands is separated from s band by a large gap, a consequence of large separation between atomic s and p levels. Unlike the case of infinite helix we find that all the character of the occupied p bands show all the three components, px, py and pz. Further, non bonding orbitals are found to lie below the HOMO level.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    P. Jena, A.W. Castleman, Proc. Natl. Acad. Sci. U.S.A. 103, 10560 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Somorjai, A.M. Contreras, M. Montano, R.M. Rioux, Proc. Natl. Acad. Sci. U.S.A. 103, 10577 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    A. Pal, S.N. Shirodkar, S. Gohil, S. Ghosh, U.V. Waghmare, P. Ayyub, Sci. Rep. 3, 2051 (2013) ADSCrossRefGoogle Scholar
  5. 5.
    M.U. Kahaly, P. Ghosh, S. Narasimhan, U.V. Waghmare, J. Chem. Phys. 128, 044718 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    D. Hohl, R.O. Jones, R. Car, M. Parrinello, Chem. Phys. Lett. 89, 6823 (1988) Google Scholar
  7. 7.
    D. Hohl, R.O. Jones, R. Car, M. Parrinello, Chem. Phys. Lett. 139, 540 (1987) ADSCrossRefGoogle Scholar
  8. 8.
    R.O. Jones, D. Hohl, J. Am. Chem. Soc. 112, 2590 (1990) CrossRefGoogle Scholar
  9. 9.
    R.O. Jones, D. Hohl, J. Quantum Chem. Symp. 24, 141 (1990) CrossRefGoogle Scholar
  10. 10.
    S. Hunsicker, R.O. Jones, G. Ganteför, J. Chem. Phys. 102, 5917 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Demkov, O.F. Sankey, J. Phys.: Condens. Matter 13, 10433 (2001) ADSGoogle Scholar
  12. 12.
    J. Becker, K. Rademann, F. Hensel, Z. Phys. D: At., Mol. Clusters 19, 233 (1991) CrossRefGoogle Scholar
  13. 13.
    B.C. Pan, Phys. Rev. B 65, 085407 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, Phys. Rev. B 33, 8822 (1986) ADSCrossRefGoogle Scholar
  16. 16.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    P. Ghosh, J. Bhattacharjee, U.V. Waghmare, J. Phys. Chem. C 112, 983 (2008) CrossRefGoogle Scholar
  19. 19.
    J. Akola, R.O. Jones, Phys. Rev. B 85, 134103 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    V. Kaware, K. Joshi, J. Chem. Phys. 141, 054308 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Ghazi, S. Zorriasatein, D.G. Kanhere, J. Phys. Chem. A 113, 2659 (2009) CrossRefGoogle Scholar
  22. 22.
    S. Krishnamurty, K. Joshi, S. Zorriasatein, D.G. Kanhere, J. Chem. Phys. 127, 054308 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    I. Heidari, S. De, S.M. Ghazi, S. Goedecker, D.G. Kanhere, J. Phys. Chem. A 115, 12307 (2011) CrossRefGoogle Scholar
  24. 24.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  25. 25.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Glass, A.R. Oganov, N. Hansen, Comput. Phys. Commun. 175, 713 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    A.R. Oganov, A.O. Lyakhov, M. Valle, Acc. Chem. Res. 44, 227 (2011) CrossRefGoogle Scholar
  31. 31.
    G.A. Breaux, D.A. Hillman, C.M. Neal, R.C. Benirschke, M.F. Jarrold, J. Am. Chem. Soc. 126, 8628 (2004) CrossRefGoogle Scholar
  32. 32.
    S. Krishnamurty, S. Chacko, D.G. Kanhere, Phys. Rev. B 73, 045406 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    S. Chacko, K. Joshi, D.G. Kanhere, S.A. Blundell, Phys. Rev. Lett. 92, 135506 (2004) ADSCrossRefGoogle Scholar
  34. 34.
    A. Aguado, J.M. López, J. Phys. Chem. Lett. B 110, 14020 (2006) CrossRefGoogle Scholar
  35. 35.
    A. Aguado, J.M. López, J. Chem. Phys. 130, 064704 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tamanna Sharma
    • 1
  • Raman Sharma
    • 1
    Email author
  • Rohit A. Tamboli
    • 2
  • Dilip Govind Kanhere
    • 3
  1. 1.Department of PhysicsHimachal Pradesh UniversityShimlaIndia
  2. 2.Science Park, Savitribai Phule Pune UniversityPuneIndia
  3. 3.Centre for Modeling and Simulation, Savitribai Phule Pune UniversityPuneIndia

Personalised recommendations