Advertisement

Synchronization patterns in Stuart–Landau networks: a reduced system approach

  • Liudmila Tumash
  • Elena Panteley
  • Anna Zakharova
  • Eckehard SchöllEmail author
Regular Article
  • 11 Downloads

Abstract

We study networks with coupled phase and amplitude dynamics. In particular, we investigate a ring of Stuart–Landau oscillators. For symmetry-conserving coupling we observe cluster synchronization. We show that the dimension of the dynamical system can be substantially reduced by projecting the system onto the subspace corresponding to the unstable eigenvalues of the linear part of the network dynamics.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E. Panteley, A. Loria, IEEE Trans. Autom. Contr. 62, 3758 (2017) CrossRefGoogle Scholar
  2. 2.
    J. van der Mark, B. van der Pol, Physica 1, 437 (1934) ADSCrossRefGoogle Scholar
  3. 3.
    I.I. Blekhman, A.L. Fradkov, H. Nijmeijer, A.Y. Pogromsky, Syst. Cont. Lett. 31, 299 (1997) CrossRefGoogle Scholar
  4. 4.
    A. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001) Google Scholar
  5. 5.
    E. Mosekilde, Y. Maistrenko, D. Postnov, Chaotic Synchronization: Applications to Living Systems (World Scientific, Singapore, 2002) Google Scholar
  6. 6.
    A.G. Balanov, N.B. Janson, D.E. Postnov, O.V. Sosnovtseva, Synchronization: From Simple to Complex (Springer, Berlin, 2009) Google Scholar
  7. 7.
    T. Dahms, J. Lehnert, E. Schöll, Phys. Rev. E 86, 016202 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    E. Schöll, in Advances in Analysis and Control of Time-Delayed Dynamical Systems, edited by J.-Q. Sun, Q. Ding (World Scientific, Singapore, 2013), Chap. 4, p. 57 Google Scholar
  9. 9.
    V.I. Nekorkin, Introduction to Nonlinear Oscillations (Wiley, Weinheim, 2015) Google Scholar
  10. 10.
    E. Schöll, S.H.L. Klapp, P. Hövel, Control of Self-Organizing Nonlinear Systems (Springer, Berlin, 2016) Google Scholar
  11. 11.
    S. Boccaletti, A.N. Pisarchik, C.I. del Genio, A. Amann, Synchronization: From Coupled Systems to Complex Networks (Cambridge University Press, 2018) Google Scholar
  12. 12.
    E. Panteley, A. Loria, IFAC-PapersOnLine 49, 90 (2016)  https://doi.org/10.1016/j.ifacol.2016.07.990 CrossRefGoogle Scholar
  13. 13.
    E. Panteley, A. Loria, A. El-Ati, Int. J. Control (2019)  https://doi.org/10.1080/00207179.2018.1551618
  14. 14.
    Y. Kuramoto, D. Battogtokh, Nonlin. Phen. Complex Sys. 5, 380 (2002) Google Scholar
  15. 15.
    F.M. Atay, Phys. Rev. Lett. 91, 094101 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    B. Fiedler, V. Flunkert, P. Hövel, E. Schöll, Phil. Trans. R. Soc. A 368, 319 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    C.U. Choe, T. Dahms, P. Hövel, E. Schöll, Phys. Rev. E 81, 025205(R) (2010) ADSCrossRefGoogle Scholar
  18. 18.
    Y.N. Kyrychko, K.B. Blyuss, E. Schöll, Phil. Trans. R. Soc. A 371, 20120466 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    C.M. Postlethwaite, G. Brown, M. Silber, Phil. Trans. R. Soc. A 371, 20120467 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    I. Schneider, Phil. Trans. R. Soc. A 371, 20120472 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    L. Schmidt, K. Schönleber, K. Krischer, V. Garcia-Morales, Chaos 24, 013102 (2014) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    A. Zakharova, S. Loos, J. Siebert, A. Gjurchinovski, J.C. Claussen, E. Schöll, in Control Self Organizing Nonlinear Systems, edited by E. Schöll, S.H.L. Klapp, P. Hövel (Springer, Berlin, Heidelberg, 2016) Google Scholar
  24. 24.
    L. Illing, Phys. Rev. E 94, 022215 (2016) ADSCrossRefGoogle Scholar
  25. 25.
    A.Y. Pogromsky, H. Nijmeijer, IEEE Trans. Circuits Syst. I - Fundam. Theory Appl. 48, 152 (2001) CrossRefGoogle Scholar
  26. 26.
    A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Zakharova, I. Schneider, Y.N. Kyrychko, K.B. Blyuss, A. Koseska, B. Fiedler, E. Schöll, Europhys. Lett. 104, 50004 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    I. Schneider, M. Kapeller, S. Loos, A. Zakharova, B. Fiedler, E. Schöll, Phys. Rev. E 92, 052915 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    A.Y. Pogromsky, T. Glad, H. Nijmeijer, Int. J. Bifurc. Chaos 9, 629 (1999) CrossRefGoogle Scholar
  30. 30.
    C. Wille, J. Lehnert, E. Schöll, Phys. Rev. E 90, 032908 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liudmila Tumash
    • 1
  • Elena Panteley
    • 2
  • Anna Zakharova
    • 1
  • Eckehard Schöll
    • 1
    Email author
  1. 1.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany
  2. 2.Laboratoire des signaux et systèmes, CNRSGif-sur-YvetteFrance

Personalised recommendations