Advertisement

Influence of mechanical tensile and compression tests under high strain rate on structural properties of copper monatomic metallic glass

  • Kaoutar BelouardaEmail author
  • Salma Trady
  • Khalid Saadouni
  • Mhammed Mazroui
Regular Article
  • 21 Downloads

Abstract

This paper aims to investigate the structural properties of Cu-monatomic metallic glass, and to elucidate the effect of mechanical tensile and compression tests with high strain rate on these properties. This work is performed by using molecular dynamics simulations combined with embedded atom method. The structure parameters such as radial distribution function, Voronoi Tessellation and Common neighbor analysis have been used to characterize and investigate the local structure in the Cu-monatomic metallic glass. Our numerical results show that, the most dominant structures are the distorted icosahedra ⟨0,1,10,2⟩ and ⟨0,2,8,4⟩ for this specific system. These two structures are more higher than the full icosahedra motif ⟨0,0,12,0⟩ which presents, generally, the high percentage for multi-component and for some monatomic metallic glasses. In addition, we have found that the second peak splitting in the partial distribution function of Cu metallic glass is caused essentially by the icosahedra-like polyhedron and not only by the full icosahedra. On the other hand, we have shown that the mechanical tests strongly influence these local structures. In fact, tensile and compression tests lead to reduce the importance of the short range order by decreasing the icosahedra and icosahedra-like fractions. However, these mechanical effects do not alter significantly ⟨0,3,6,4⟩ clusters, which maintain almost the same percentage during the mechanical testing. Moreover, comparison between compression and tensile tests with regard to the mechanical behavior and how it can be altered by the strain rate is done. Implications of these results are briefly discussed.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    L. Yang, G.Q. Guo, L.Y. Chen, S.H. Wei, J.Z. Jiang, X.D. Wang, Scr. Mater. 63, 879 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    J. Mo, H. Liu, Y. Zhang, M. Wang, L. Zhang, B. Liu, W. Yang, J. Non. Cryst. Solids 464, 1 (2017) ADSCrossRefGoogle Scholar
  3. 3.
    W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R Reports 44, 45 (2004) CrossRefGoogle Scholar
  4. 4.
    I. Vincze, D.S. Boudreaux, M. Tegze, Phys. Rev. B 19, 10 (1979) CrossRefGoogle Scholar
  5. 5.
    B.S. Lou, Y.C. Yang, J.W. Lee, L.T. Chen, Surf. Coatings Technol. 320, 512 (2016) CrossRefGoogle Scholar
  6. 6.
    Z.D. Sha, L.C. He, S. Xu, Q.X. Pei, Z.S. Liu, Y.W. Zhang, T.J. Wang, Scr. Mater. 93, 36 (2014) CrossRefGoogle Scholar
  7. 7.
    S. Gravier, J.J. Blandin, M. Suéry, Mater. Sci. Eng. A 527, 4197 (2010) CrossRefGoogle Scholar
  8. 8.
    J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. Res. 22, 285 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    R.B. Diegle, J. Non. Cryst. Solids 62, 601 (1984) ADSCrossRefGoogle Scholar
  10. 10.
    P. Ramasamy, M. Stoica, S. Bera, M. Calin, J. Eckert, J. Alloys Compd. 707, 78 (2017) CrossRefGoogle Scholar
  11. 11.
    M. Zhu, Y. Fa, Z. Jian, L. Yao, C. Jin, J. Xu, R. Nan, F. Chang, Trans. Nonferrous Met. Soc. China 27, 857 (2017) CrossRefGoogle Scholar
  12. 12.
    Y.B. Wang, H.F. Li, Y. Cheng, Y.F. Zheng, L.Q. Ruan, Mater. Sci. Eng. C 33, 3489 (2013) CrossRefGoogle Scholar
  13. 13.
    M. Tahiri, S. Trady, A. Hasnaoui, M. Mazroui, K. Saadouni, K. Sbiaai, Mod. Phys. Lett. B 30, 1650170 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    X. Gu, W. Hao, J. Wang, H. Kou, J. Li, Rare Met. Mater. Eng. 39, 1693 (2010) CrossRefGoogle Scholar
  15. 15.
    L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao, Nature 512, 177 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    S. Sengul, M. Celtek, U. Domekeli, Vacuum 136, 20 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, Z.D. Sha, Mater. Des. 77, 1 (2015) CrossRefGoogle Scholar
  18. 18.
    X. Shi, J. Zhang, M. Sun, Mater. Lett. 157, 180 (2015) CrossRefGoogle Scholar
  19. 19.
    Y. Jiang, L. Sun, Q. Wu, K. Qiu, J. Non. Cryst. Solids 459, 26 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    Z. Ning, W. Liang, Z. Kang, H. Sun, J. Sun, Mater. Sci. Eng. A 697, 233 (2017) CrossRefGoogle Scholar
  21. 21.
    X. Di Wang, R.T. Qu, Z.Q. Liu, Z.F. Zhang, Mater. Sci. Eng. A 696, 267 (2017) CrossRefGoogle Scholar
  22. 22.
    J. Schroers, W.L. Johnson, Phys. Rev. Lett. 93, 20 (2004) CrossRefGoogle Scholar
  23. 23.
    J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Phys. Rev. Lett. 94, 1 (2005) CrossRefGoogle Scholar
  24. 24.
    C. Fan, R.T. Ott, T.C. Hufnagel, Appl. Phys. Lett. 81, 1020 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    F. Szuecs, C.P. Kim, W.L. Johnson, Acta. Mater. 49, 1507 (2001) CrossRefGoogle Scholar
  26. 26.
    L. Wang, X. Li, M. Gao, X. Zeng, J. Manuf. Process. 27, 207 (2017) CrossRefGoogle Scholar
  27. 27.
    M. Roger et al., Biochim. Biophys. Acta 1858, 351 (2017) CrossRefGoogle Scholar
  28. 28.
    J. Zhang, C. Liu, Y. Shu, J. Fan, Appl. Surf. Sci. 261, 690 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    L.C. Liu, J.L. Kuo, Comput. Phys. Commun. 189, 119 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 15012 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    G. Li, M.R. von Spakovsky, Energy 115, 498 (2016) CrossRefGoogle Scholar
  32. 32.
    N.E. Hamilton, R. Mahjoub, K.J. Laws, M. Ferry, Comput. Mater. Sci. 130, 130 (2017) CrossRefGoogle Scholar
  33. 33.
    S. (Johnathan) Tan, L. Prasetyo, Y. Zeng, D.D. Do, D. Nicholson, Chem. Eng. J. 316, 243 (2017) CrossRefGoogle Scholar
  34. 34.
    M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Philos. Mag. 88, 1723 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    S. Trady, A. Hasnaoui, M. Mazroui, J. Non. Cryst. Solids 468, 27 (2017) ADSCrossRefGoogle Scholar
  36. 36.
    K. Vijay Reddy, S. Pal, J. Non. Cryst. Solids 471, 243 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    X. Zhou, H. Zhou, X. Li, C. Chen, J. Mech. Phys. Solids 84, 130 (2015) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 2241061 (2001) CrossRefGoogle Scholar
  39. 39.
    S. Trady, M. Mazroui, A. Hasnaoui, K. Saadouni, J. Non. Cryst. Solids 443, 136 (2016) ADSCrossRefGoogle Scholar
  40. 40.
    R.S. Liu, D.W. Qi, S. Wang, Phys. Rev. B 45, 451 (1992) ADSCrossRefGoogle Scholar
  41. 41.
    B.W. van de Waal, J. Non. Cryst. Solids 189, 118 (1995) ADSCrossRefGoogle Scholar
  42. 42.
    T. Fujiwara, H. Chen, Y. Waseda, J. Phys. F Met. Phys. 11, 1327 (1981) ADSCrossRefGoogle Scholar
  43. 43.
    S.P. Pan, J.Y. Qin, W.M. Wang, T.K. Gu, Phys. Rev. B 84, 1 (2011) Google Scholar
  44. 44.
    A. Radhi, K. Behdinan, Comput. Mater. Sci. 126, 182 (2017) CrossRefGoogle Scholar
  45. 45.
    T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu, A.C. Hannon, Mater. Trans. 48, 1698 (2007) CrossRefGoogle Scholar
  46. 46.
    J. Ding, Y. Cheng, E. Ma, Acta Mater. 69, 343 (2014) CrossRefGoogle Scholar
  47. 47.
    Y. Xu, M. Yu, R. Xu, X. Wang, Z. Wang, Y. Liang, J. Lin, Metals 6, 1 (2016) Google Scholar
  48. 48.
    M. Lee, C. Lee, K. Lee, E. Ma, J. Lee, Acta Mater. 59, 159 (2011) CrossRefGoogle Scholar
  49. 49.
    A. Foroughi, R. Tavakoli, H. Aashuri, J. Non. Cryst. Solids 432, 334 (2015) ADSCrossRefGoogle Scholar
  50. 50.
    S. Trady, A. Hasnaoui, M. Mazroui, J. Non. Cryst. Solids 468, 27 (2017) ADSCrossRefGoogle Scholar
  51. 51.
    C. Zhong et al., Sci. Rep. 6, 1 (2016) CrossRefGoogle Scholar
  52. 52.
    P. Gupta, N. Yedla, Proc. Eng. 184, 631 (2017) CrossRefGoogle Scholar
  53. 53.
    M.A. Popescu, J. Non. Cryst. Solids 169, 155 (1994) ADSCrossRefGoogle Scholar
  54. 54.
    G. Li, Y.C. Li, Q. Jing, T. Xu, L. Qi, M.Z. Ma, J. Liu, T. Zhang, R.P. Liu, Mater. Chem. Phys. 113, 937 (2009) CrossRefGoogle Scholar
  55. 55.
    B.-J. Lee, J.C. Lee, Y.-C. Kim, S.H. Lee, Met. Mater. Int. 10, 467 (2004) CrossRefGoogle Scholar
  56. 56.
    W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren, M. Umemoto, K. Tsuchiya, A. Inoue, T. Egami, Acta Mater. 58, 429 (2010) CrossRefGoogle Scholar
  57. 57.
    K.W. Park, E. Fleury, H.K. Seok, Y.C. Kim, Intermetallics 19, 1168 (2011) CrossRefGoogle Scholar
  58. 58.
    L. Sun, W. Wang, L. Wang, Phys. Rev. B 68, 8 (2003) Google Scholar
  59. 59.
    P. Wang, H. Li, L. Yang, Metals (Basel) 7, 444 (2017) CrossRefGoogle Scholar
  60. 60.
    Y. Huang, J. Shen, Y. Sun, J. Sun, J.J.J. Chen, J. Alloys Compd. 2017, 23 (2010) Google Scholar
  61. 61.
    Q. Zhang, Q.-K. Li, M. Li, Sci. Rep. 7, 41365 (2017) ADSCrossRefGoogle Scholar
  62. 62.
    J. Tan, C.J. Li, Y.H. Jiang, R. Zhou, J. Eckert, PRICM 2013, 3199 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kaoutar Belouarda
    • 1
    Email author
  • Salma Trady
    • 2
  • Khalid Saadouni
    • 1
    • 2
  • Mhammed Mazroui
    • 2
  1. 1.Laboratoire d’ingénierie, procédés, optimisation, systèmes informatiques, Ecole Nationale des Sciences Appliquées KhouribgaSettatMorocco
  2. 2.Laboratoire de la Physique de la Matière Condensée, Faculté des Sciences Ben M’sik, Hassan II University of CasablancaCasablancaMorocco

Personalised recommendations