Advertisement

Piezoelectric properties of Ga2O3: a first-principle study

  • San-Dong GuoEmail author
  • Hui-Min Du
Regular Article
  • 18 Downloads

Abstract

The compounds exhibit piezoelectricity, which demands to break inversion symmetry, and then to be a semiconductor. For Ga2O3, the orthorhombic case (ϵ-Ga2O3) of common five phases breaks inversion symmetry. Here, the piezoelectric tensor of ϵ-Ga2O3 is reported by using density functional perturbation theory (DFPT). To confirm semiconducting property of ϵ-Ga2O3, its electronic structures are studied by using generalized gradient approximation (GGA) and Tran and Blaha’s modified Becke and Johnson (mBJ) exchange potential. The gap value of 4.66 eV is predicted with mBJ method, along with the effective mass tensor for electron at the conduction band minimum (CBM) [about 0.24 m0]. The mBJ gap is very close to the available experimental value. The elastic tensor Cij are calculated by using the finite difference method (FDM), and piezoelectric stress tensor eij are attained by DFPT, and then piezoelectric strain tensor dij are calculated from Cij and eij. In this process, average mechanical properties of ϵ-Ga2O3 are estimated, such as bulk modulus, Shear modulus, Young’s modulus and so on. The calculated dij are comparable and even higher than commonly used piezoelectric materials such as α-quartz, ZnO, AlN and GaN.

Graphical abstract

Keywords

Solid State and Materials 

Notes

Author contribution statement

Hui-Min Du and San-Dong Guo designed the study and analysed data. San-Dong Guo collected data, plotted graphs and wrote the manuscript.

References

  1. 1.
    S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018) ADSCrossRefGoogle Scholar
  2. 2.
    S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, J. Phys.: Condens. Matter 19, 346211 (2007) Google Scholar
  3. 3.
    S.J. Pearton, F. Ren, M. Tadjer, J. Kim, J. Appl. Phys. 124, 220901 (2018) CrossRefGoogle Scholar
  4. 4.
    N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    F. Ricci, F. Boschi, A. Baraldi, A. Filippetti, M. Higashiwaki, A. Kuramata, V. Fiorentini, R. Fornari, J. Phys.: Condens. Matter 28, 224005 (2016) ADSGoogle Scholar
  7. 7.
    K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    Z.L. Wang, Adv. Mater. 24, 4632 (2012) CrossRefGoogle Scholar
  10. 10.
    C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Nat. Nanotechnol. 5, 366 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    M.B. Maccioni, V. Fiorentini, Appl. Phys. Express 9, 041102 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    J. Furthmüller, F. Bechstedt, Phys. Rev. B 93, 115204 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    J. Kim, D. Tahara, Y. Miura, B.G. Kim, Appl. Phys. Express 11, 061101 (2018) ADSCrossRefGoogle Scholar
  15. 15.
    M. Mulazzi, F. Reichmann, A. Becker, W.M. Klesse, P. Alippi, V. Fiorentini, A. Parisini, M. Bosi, R. Fornari, APL Mater. 7, 022522 (2019) ADSCrossRefGoogle Scholar
  16. 16.
    M. Pavesi, F. Fabbri, F. Boschi, G. Piacentini, A. Baraldi, M. Bosi, E. Gombia, A. Parisini, R. Fornari, Mater. Chem. Phys. 205, 502 (2018) CrossRefGoogle Scholar
  17. 17.
    K. Shimada, Mater. Res. Express 5, 036502 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    L. Bornstein, inGroup III: Solid State Physics, Low Frequency Properties of Dielectric Crystals: Piezoelectric, Pyroelectric and Related Constants (Springer, Berlin, 1993), pp. 330–332 Google Scholar
  19. 19.
    K. Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. SU-32, 634 (1985) ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Lueng, H.L. Chang, C. Suya, C.L. Choy, J. Appl. Phys. 88, 5360 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    A. Hangleiter, F. Hitzel, S. Lahmann, U. Rossow, Appl. Phys. Lett. 83, 1169 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    S. Muensit, E.M. Goldys, I.L. Guy, Appl. Phys. Lett. 75, 3965 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  24. 24.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  25. 25.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Technische Universität Wien, Austria, 2001), ISBN 3-9501031-1-2 Google Scholar
  26. 26.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    X. Wu, D. Vanderbilt, D.R. Hamann, Phys. Rev. B 72, 035105 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    G. Kresse, J. Non-Cryst. Solids 193, 222 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  31. 31.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    R. Bechmann, Phys. Rev. 110, 1060 (1958) ADSCrossRefGoogle Scholar
  34. 34.
    K. Shimada, Jpn. J. Appl. Phys. 45, L358 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    M. Cattia, Y. Noel, R. Dovesi, J. Phys. Chem. Solids 64, 2183 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    F. Bernardini, V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Electronic Engineering, Xi’an University of Posts and TelecommunicationsXi’anP.R. China

Personalised recommendations