Advertisement

Piezoelectric properties of Ga2O3: a first-principle study

  • 30 Accesses

Abstract

The compounds exhibit piezoelectricity, which demands to break inversion symmetry, and then to be a semiconductor. For Ga2O3, the orthorhombic case (ϵ-Ga2O3) of common five phases breaks inversion symmetry. Here, the piezoelectric tensor of ϵ-Ga2O3 is reported by using density functional perturbation theory (DFPT). To confirm semiconducting property of ϵ-Ga2O3, its electronic structures are studied by using generalized gradient approximation (GGA) and Tran and Blaha’s modified Becke and Johnson (mBJ) exchange potential. The gap value of 4.66 eV is predicted with mBJ method, along with the effective mass tensor for electron at the conduction band minimum (CBM) [about 0.24 m0]. The mBJ gap is very close to the available experimental value. The elastic tensor Cij are calculated by using the finite difference method (FDM), and piezoelectric stress tensor eij are attained by DFPT, and then piezoelectric strain tensor dij are calculated from Cij and eij. In this process, average mechanical properties of ϵ-Ga2O3 are estimated, such as bulk modulus, Shear modulus, Young’s modulus and so on. The calculated dij are comparable and even higher than commonly used piezoelectric materials such as α-quartz, ZnO, AlN and GaN.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018)

  2. 2.

    S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, J. Phys.: Condens. Matter 19, 346211 (2007)

  3. 3.

    S.J. Pearton, F. Ren, M. Tadjer, J. Kim, J. Appl. Phys. 124, 220901 (2018)

  4. 4.

    N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997)

  5. 5.

    M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

  6. 6.

    F. Ricci, F. Boschi, A. Baraldi, A. Filippetti, M. Higashiwaki, A. Kuramata, V. Fiorentini, R. Fornari, J. Phys.: Condens. Matter 28, 224005 (2016)

  7. 7.

    K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008)

  8. 8.

    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997)

  9. 9.

    Z.L. Wang, Adv. Mater. 24, 4632 (2012)

  10. 10.

    C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752 (2013)

  11. 11.

    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Nat. Nanotechnol. 5, 366 (2010)

  12. 12.

    M.B. Maccioni, V. Fiorentini, Appl. Phys. Express 9, 041102 (2016)

  13. 13.

    J. Furthmüller, F. Bechstedt, Phys. Rev. B 93, 115204 (2016)

  14. 14.

    J. Kim, D. Tahara, Y. Miura, B.G. Kim, Appl. Phys. Express 11, 061101 (2018)

  15. 15.

    M. Mulazzi, F. Reichmann, A. Becker, W.M. Klesse, P. Alippi, V. Fiorentini, A. Parisini, M. Bosi, R. Fornari, APL Mater. 7, 022522 (2019)

  16. 16.

    M. Pavesi, F. Fabbri, F. Boschi, G. Piacentini, A. Baraldi, M. Bosi, E. Gombia, A. Parisini, R. Fornari, Mater. Chem. Phys. 205, 502 (2018)

  17. 17.

    K. Shimada, Mater. Res. Express 5, 036502 (2018)

  18. 18.

    L. Bornstein, inGroup III: Solid State Physics, Low Frequency Properties of Dielectric Crystals: Piezoelectric, Pyroelectric and Related Constants (Springer, Berlin, 1993), pp. 330–332

  19. 19.

    K. Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. SU-32, 634 (1985)

  20. 20.

    C.M. Lueng, H.L. Chang, C. Suya, C.L. Choy, J. Appl. Phys. 88, 5360 (2000)

  21. 21.

    A. Hangleiter, F. Hitzel, S. Lahmann, U. Rossow, Appl. Phys. Lett. 83, 1169 (2003)

  22. 22.

    S. Muensit, E.M. Goldys, I.L. Guy, Appl. Phys. Lett. 75, 3965 (1999)

  23. 23.

    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

  24. 24.

    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

  25. 25.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Technische Universität Wien, Austria, 2001), ISBN 3-9501031-1-2

  26. 26.

    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

  27. 27.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  28. 28.

    X. Wu, D. Vanderbilt, D.R. Hamann, Phys. Rev. B 72, 035105 (2005)

  29. 29.

    G. Kresse, J. Non-Cryst. Solids 193, 222 (1995)

  30. 30.

    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

  31. 31.

    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

  32. 32.

    F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

  33. 33.

    R. Bechmann, Phys. Rev. 110, 1060 (1958)

  34. 34.

    K. Shimada, Jpn. J. Appl. Phys. 45, L358 (2006)

  35. 35.

    M. Cattia, Y. Noel, R. Dovesi, J. Phys. Chem. Solids 64, 2183 (2003)

  36. 36.

    F. Bernardini, V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002)

Download references

Author information

Hui-Min Du and San-Dong Guo designed the study and analysed data. San-Dong Guo collected data, plotted graphs and wrote the manuscript.

Correspondence to San-Dong Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Du, H. Piezoelectric properties of Ga2O3: a first-principle study. Eur. Phys. J. B 93, 7 (2020). https://doi.org/10.1140/epjb/e2019-100516-6

Download citation

Keywords

  • Solid State and Materials