Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamics of disordered quantum systems using flow equations

Abstract

In this manuscript, we show how flow equation methods can be used to study localisation in disordered quantum systems, and particularly how to use this approach to obtain the non-equilibrium dynamical evolution of observables. We review the formalism, based on continuous unitary transforms, and apply it to a non-interacting yet non trivial one-dimensional disordered quantum system, the Power-Law Random Banded Matrix model whose dynamics is studied across the localisation-delocalisation transition. We show how this method can be used to compute quench dynamics of simple observables, demonstrate how this formalism provides a natural framework to understand operator spreading and show how to construct complex objects such as correlation functions. We also discuss how the method may be applied to interacting quantum systems, and end with an outlook on unsolved problems and ways in which the method can be further developed in the future. Our goal is to motivate further adoption of the flow equation method, and to equip and encourage others to build on this technique as a means to study localisation phenomena in disordered quantum systems.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.W. Anderson, Phys. Rev. 109, 1492 (1958)

  2. 2.

    F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

  3. 3.

    I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005)

  4. 4.

    D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

  5. 5.

    V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

  6. 6.

    A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010)

  7. 7.

    J.Z. Imbrie, J. Stat. Phys. 163, 998 (2016)

  8. 8.

    J.Z Imbrie, V. Ros, A. Scardicchio, Ann. Phys. 529, 1600278 (2017)

  9. 9.

    E. Altman, R. Vosk, Annu. Rev. Condens. Matter Phys. 6, 383 (2015)

  10. 10.

    R. Nandkishore, D.A Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

  11. 11.

    F. Alet, N. Laflorencie, C. R. Phys. 19, 498 (2018)

  12. 12.

    D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)

  13. 13.

    M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

  14. 14.

    L.F. Cugliandolo, G. Lozano, Phys. Rev. Lett. 80, 4979 (1998)

  15. 15.

    L.F. Cugliandolo, G. Lozano, Phys. Rev. B 59, 915 (1999)

  16. 16.

    L.F. Cugliandolo, D.R. Grempel, C.A. da Silva Santos, Phys. Rev. B 64, 014403 (2001)

  17. 17.

    G. Biroli, L.F. Cugliandolo, Phys. Rev. B 64, 014206 (2001)

  18. 18.

    G. Biroli, O. Parcollet, Phys. Rev. B 65, 094414 (2002)

  19. 19.

    D.A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, S.L. Sondhi, Phys. Rev. B 88, 014206 (2013)

  20. 20.

    P. Ponte, Z. Papić, F. Huveneers, D.A. Abanin, Phys. Rev. Lett. 114, 140401 (2015)

  21. 21.

    F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012)

  22. 22.

    V. Khemani, A. Lazarides, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 116, 250401 (2016)

  23. 23.

    D.V. Else, B. Bauer, C. Nayak, Phys. Rev. Lett. 117, 090402 (2016)

  24. 24.

    J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao, C. Monroe, Nature 543, 217 (2017)

  25. 25.

    S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N.Y. Yao, E. Demler, M.D. Lukin, Nature 543, 221 (2017)

  26. 26.

    J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)

  27. 27.

    S.S. Kondov, W.R. McGehee, W. Xu, B. DeMarco, Phys. Rev. Lett. 114, 083002 (2015)

  28. 28.

    J.Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Science 352, 1547 (2016)

  29. 29.

    J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P.W. Hess, P. Hauke, M. Heyl, D.A. Huse, C. Monroe, Nat. Phys. 12, 907 (2016)

  30. 30.

    V.L. Quito, P. Titum, D. Pekker, G. Refael, Phys. Rev. B 94, 104202 (2016)

  31. 31.

    D. Pekker, B.K Clark, V. Oganesyan, G. Refael, Phys. Rev. Lett. 119, 075701 (2017)

  32. 32.

    S. Savitz, G. Refael, Phys. Rev. B 96, 115129 (2017)

  33. 33.

    S.J. Thomson, M. Schiró, Phys. Rev. B 97, 060201 (2018)

  34. 34.

    S.P. Kelly, R. Nandkishore, J. Marino, Exploring many-body localisation in open quantum systems via wegner-wilson flows, https://arXiv:1902.11295 (2019)

  35. 35.

    X. You, D. Pekker, B.K. Clark, Bulk geometry of the many body localized phase from wilson-wegner flow, https://arXiv:1909.11097 (2019)

  36. 36.

    S. Savitz, C. Peng, G. Refael, Phys. Rev. B 100, 094201 (2019)

  37. 37.

    S. Kehrein, inThe flow equation approach to many-particle systems (Springer, 2007), Vol. 217

  38. 38.

    L.S. Levitov, Phys. Rev. Lett. 64, 547 (1990)

  39. 39.

    A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, T.H. Seligman, Phys. Rev. E 54, 3221 (1996)

  40. 40.

    L.S. Levitov, Ann. Phys. 8, 697 (1999)

  41. 41.

    A. Nahum, S. Vijay, J. Haah, Phys. Rev. X 8, 021014 (2018)

  42. 42.

    V. Khemani, A. Vishwanath, D.A. Huse, Phys. Rev. X 8, 031057 (2018)

  43. 43.

    S. Gopalakrishnan, D.A. Huse, V. Khemani, R. Vasseur, Phys. Rev. B 98, 220303 (2018)

  44. 44.

    S.D. Głazek, K.G. Wilson, Phys. Rev. D 48, 5863 (1993)

  45. 45.

    S.D. Glazek, K.G. Wilson, Phys. Rev. D 49, 4214 (1994)

  46. 46.

    F. Wegner, Ann. Phys. 506, 77 (1994)

  47. 47.

    R.W. Brockett, Linear Algebra Appl. 146, 79 (1991)

  48. 48.

    M.T. Chu, K.R. Driessel, SIAM J. Numer. Anal. 27, 1050 (1990)

  49. 49.

    M.T. Chu, Fields Inst. Commun. 3, 87 (1994)

  50. 50.

    F. Wegner, J. Phys. A 39, 8221 (2006)

  51. 51.

    C. Monthus, J. Phys. A 49, 305002 (2016)

  52. 52.

    M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)

  53. 53.

    A. Hackl, S. Kehrein, Phys. Rev. B 78, 092303 (2008)

  54. 54.

    A. Hackl, S. Kehrein, J. Phys.: Condens. Matter 21, 015601 (2009)

  55. 55.

    I. Varga, D. Braun, Phys. Rev. B 61, R11859 (2000)

  56. 56.

    A.D. Mirlin, F. Evers, Phys. Rev. B 62, 7920 (2000)

  57. 57.

    F. Evers, A.D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000)

  58. 58.

    E. Cuevas, M. Ortuno, V. Gasparian, A. Perez-Garrido, Phys. Rev. Lett. 88, 016401 (2001)

  59. 59.

    V.E. Kravtsov, O. Yevtushenko, E. Cuevas, J. Phys. A 39, 2021 (2006)

  60. 60.

    V.E. Kravtsov,Lecture notes on Random Matrix Theory (2009)

  61. 61.

    C. Yeung, Y. Oono, Europhys. Lett. 4, 1061 (1987)

  62. 62.

    M.C. Tran, A. Ehrenberg, A.Y. Guo, P. Titum, D.A. Abanin, A.V. Gorshkov, Phys. Rev. A 100, 052103 (2019)

  63. 63.

    N. Roy, A, Sharma, Phys. Rev. B 97, 125116 (2018)

  64. 64.

    D.J. Luitz, Y. Bar Lev, Phys. Rev. A 99, 010105 (2019)

  65. 65.

    X. Chen, T. Zhou, Phys. Rev. B 100, 064305 (2019)

  66. 66.

    S.J. Thomson, D. Magano, M. Schiró, In preparation, 2019

  67. 67.

    S.J. Thomson, M. Schiró, In preparation, 2019

Download references

Author information

Correspondence to Steven J. Thomson.

Additional information

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomson, S.J., Schiró, M. Dynamics of disordered quantum systems using flow equations. Eur. Phys. J. B 93, 22 (2020). https://doi.org/10.1140/epjb/e2019-100476-3

Download citation