Advertisement

Effect of surface defects on order modulations in mesoscopic p-wave superconducting loops

  • Yuan Zhang
  • Guo-Qiao ZhaEmail author
Regular Article
  • 29 Downloads

Abstract

The effect of surface defects on the modulations of order parameters in mesoscopic p-wave superconducting noncircular loops with threaded magnetic flux is investigated by numerically solving the Bogoliubov-de Gennes equations self-consistently. For the case of a square loop, the sharp-jump evolution of the total energy and the sawtooth pattern of the current in flux take place when a square indentation defect is introduced at the center of the outer or inner boundary, accompanied by phase transitions between the states with diagonal-symmetric and asymmetric spatial profiles of chiral orders. Particularly, peculiar spatial patterns of the orders can occur with moving the indentation defect farther from the edge center or positioning the bulge defect at the inner or outer edge of the sample. Furthermore, the cases of two rectangular loops with different outer sizes were investigated where we consider the effect of a square indentation defect in the middle of the short or the long side of the sample. More complicated phenomena on the order modes can be found due to the aspect-ratio effect as well as the defect effect.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    E.T. Filby, A.A. Zhukov, P.A.J. de Groot, M.A. Ghanem, P.N. Bartlett, V.V. Metlushko, Appl. Phys. Lett. 89, 092503 (2006) ADSCrossRefGoogle Scholar
  2. 2.
    M. Veldhorst, C.G. Molenaar, X.L. Wang, H. Hilgenkamp, A. Brinkman, Appl. Phys. Lett. 100, 072602 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yasui, K. Lahabi, M.S. Anwar, Y. Nakamura, S. Yonezawa, T. Terashima, J. Aarts, Y. Maeno, Phys. Rev. B 96, 180507(R) (2017) ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. van Haesendonck, Y. Bruynseraede, Nature 373, 319 (1995) ADSCrossRefGoogle Scholar
  5. 5.
    L.F. Chibotaru, A. Ceulemans, V. Bruyndoncx, V.V. Moshchalkov, Nature 408, 833 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    A.K. Geim, S.V. Dubonos, J.G.S. Lok, M. Henini, J.C. Maan, Nature 396, 144 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, F.M. Peeters, V.A. Schweigert, Nature 407, 55 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    S. Pedersen, G.R. Kofod, J.C. Hollingbery, C.B. Sorensen, P.E. Lindelof, Phys. Rev. B 64, 104522 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    C. Strunk, V. Bruyndoncx, V.V. Moshchalkov, C. Van Haesendonck, Y. Bruynseraede, R. Jonckheere, Phys. Rev. B 54, R12701 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    V.M. Fomin, V.R. Misko, J.T. Devreese, V.V. Moshchalkov, Phys. Rev. B 58, 11703 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    B.J. Baelus, F.M. Peeters, Phys. Rev. B 65, 104515 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    G.R. Berdiyorov, B.J. Baelus, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 68, 174521 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    G.R. Berdiyorov, S.H. Yu, Z.L. Xiao, F.M. Peeters, J. Hua, A. Imre, W.K. Kwok, Phys. Rev. B 80, 064511 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    G.R. Berdiyorov, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 81, 144511 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. Lett. 97, 137002 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 75, 184511 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    R. Geurts, M.V. Milosevic, F.M. Peeters, Phys. Rev. B 79, 174508 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    G.-Q. Zha, M.V. Milosevic, S.-P. Zhou, F.M. Peeters, Phys. Rev. B 84, 132501 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    G.-Q. Zha, S.-S. Wang, J.-C. Wang, S.-P. Zhou, J. Appl. Phys. 112, 033907 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    D.F. Agterberg, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 78, 3374 (1997) ADSCrossRefGoogle Scholar
  21. 21.
    A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonzarich, Y. Mori, S. Nishizaki, Y. Maeno, Phys. Rev. Lett. 80, 161 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura, Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura, M. Sigrist, Nature 394, 558 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    J. Jang, D.G. Ferguson, V. Vakaryuk, R. Budakian, S.B. Chung, P.M. Goldbart, Y. Maeno, Science 331, 186 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    X. Cai, Y.A. Ying, N.E. Staley, Y. Xin, D. Fobes, T.J. Liu, Z.D. Mao, Y. Liu, Phys. Rev. B 87, 081104(R) (2013) ADSCrossRefGoogle Scholar
  25. 25.
    M. Sigrist, T.M. Rice, K. Ueda, Phys. Rev. Lett. 63, 1727 (1989) ADSCrossRefGoogle Scholar
  26. 26.
    M. Matsumoto, M. Sigrist, J. Phys. Soc. Jpn. 68, 994 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    A. Bouhon, M. Sigrist, Phys. Rev. B 90, 220511 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    T. Scaffidi, S.H. Simon, Phys. Rev. Lett. 115, 087003 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    V.F. Becerra, M.V. Milosevic, Phys. Rev. B 94, 184517 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    L.-F. Zhang, L. Covaci, M.V. Milosevic, Phys. Rev. B 96, 224512 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    X.-X. Zhang, G.-Q. Zha, S.-P. Zhou, Eur. Phys. J. B 92, 125 (2019) ADSCrossRefGoogle Scholar
  32. 32.
    J.A. Sauls, M. Eschrig, New J. Phys. 11, 075008 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    R. Blaauwgeers, V.B. Eltsov, M. Krusius, J.J. Ruohio, R. Schanen, G.E. Volovik, Nature 404, 471 (2000) ADSCrossRefGoogle Scholar
  34. 34.
    J. Garaud, E. Babaev, Phys. Rev. B 86, 060514 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    J. Garaud, E. Babaev, Sci. Rep. 5, 17540 (2015) ADSCrossRefGoogle Scholar
  36. 36.
    V.F. Becerra, E. Sardella, F.M. Peeters, M.V. Milosevic, Phys. Rev. B 93, 014518 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    L.-F. Zhang, V.F. Becerra, L. Covaci, M.V. Milosevic, Phys. Rev. B 94, 024520 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    G.-Q. Zha, Phys. Rev. B 95, 014510 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    G.-Q. Zha, Solid State Commun. 302, 113730 (2019) CrossRefGoogle Scholar
  40. 40.
    G.-Q. Zha, Z.-L. Yang, Y.-Y. Jin, S.-P. Zhou, Phys. Rev. B 94, 094510 (2016) ADSCrossRefGoogle Scholar
  41. 41.
    G.-Q. Zha, Y.-Y. Jin, Europhys. Lett. 120, 27002 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    G.-Q. Zha, Z. Zhan, S.-P. Zhou, Eur. Phys. J. B 91, 116 (2018) ADSCrossRefGoogle Scholar
  43. 43.
    G.-Q. Zha, Y. Zhang, Europhys. Lett. 124, 47002 (2018) ADSCrossRefGoogle Scholar
  44. 44.
    P.G. de Gennes,Superconductivity of Metals and Alloys (Addison-Wesley, New York, 1994) Google Scholar
  45. 45.
    J.-W. Huo, F.-C. Zhang, Phys. Rev. B 87, 134501 (2013) ADSCrossRefGoogle Scholar
  46. 46.
    M.E. Zhitomirsky, T.M. Rice, Phys. Rev. Lett. 87, 057001 (2001) ADSCrossRefGoogle Scholar
  47. 47.
    M. Takigawa, M. Ichioka, K. Machida, Phys. Rev. B 65, 014508 (2001) ADSCrossRefGoogle Scholar
  48. 48.
    J.W. Harter, B.M. Andersen, J. Bobroff, M. Gabay, P.J. Hirschfeld, Phys. Rev. B 75, 054520 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Shanghai Key Laboratory of High Temperature SuperconductorsShanghai UniversityShanghaiP.R. China

Personalised recommendations