Advertisement

Stability of delocalized nonlinear vibrational modes in graphene lattice

  • Dina U. Abdullina
  • Maria N. Semenova
  • Aleksander S. Semenov
  • Elena A. KorznikovaEmail author
  • Sergey V. Dmitriev
Regular Article
  • 1 Downloads

Abstract

Crystal lattices support delocalized nonlinear vibrational modes (DNVMs), which are determined solely by the lattice point symmetry, and are exact solutions of the equations of atomic motion for any interatomic potential. DNVMs are interesting for a number of reasons. In particular, DNVM instability can result in the formation of localized vibrational modes concentrating a significant part of the lattice energy. In some cases, localized vibrational modes can be obtained by imposing localizing functions upon DNVM. In this regard, stability of DNVMs is an important issue. In this paper, molecular dynamics is employed to address stability of all four delocalized modes in a graphene lattice in the presence of small perturbations both in the plane and normal to the plane of the lattice. When DNVM amplitude is above the stability threshold, atom trajectories deviate from the mode pattern exponentially in time. Critical exponents are calculated for the in- and out-of-plane displacements. Stability threshold amplitudes are established. Interestingly, in three of the studied DNVMs the in-plane displacements diverge faster, but in one of them the instability develops through the out-of-plane displacements. This result can be explained by the difference in atomic vibration patterns of DNVMs. Reported results refine our understanding of the nonlinear dynamics of graphene lattice and can be useful in the design of electro-mechanical resonators and sensors.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSGoogle Scholar
  2. 2.
    D. Akinwande et al., Extreme Mech. Lett. 13, 42 (2017) CrossRefGoogle Scholar
  3. 3.
    Q. Bao, K.P. Loh, ACS Nano 6, 3677 (2012) CrossRefGoogle Scholar
  4. 4.
    T. Miao, S. Yeom, P. Wang, B. Standley, M. Bockrath, Nano Lett. 14, 2982 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Dolleman, S. Houri, A. Chandrashekar, F. Alijani, H.S.J. Van Der Zant, P.G. Steeneken, Sci. Rep. 8, 9366 (2018) ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Dolleman, P. Belardinelli, S. Houri, H.S.J. Van Der Zant, F. Alijani, P.G. Steeneken, Nano Lett. 19, 1282 (2019) ADSCrossRefGoogle Scholar
  7. 7.
    B. Sajadi, F. Alijani, D. Davidovikj, J. Goosen, P.G. Steeneken, F. Van Keulen, J. Appl. Phys. 122, 234302 (2017) ADSCrossRefGoogle Scholar
  8. 8.
    B. Sajadi, S. Wahls, S.V. Hemert, P. Belardinelli, P.G. Steeneken, F. Alijani, J. Mech. Phys. Solids 122, 161 (2019) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Midtvedt, A. Isacsson, A. Croy, Nat. Commun. 5, 4838 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    S. Singh, B.P. Patel, Eur. J. Mech. A Solids 59, 165 (2016) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S.O. Gajbhiye, S.P. Singh, Appl. Phys. A 122, 523 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 99, 235411 (2019) ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 92, 035412 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    E.A. Korznikova, S.V. Dmitriev, J. Phys. D: Appl. Phys. 47, 345307 (2014) CrossRefGoogle Scholar
  15. 15.
    D. Ru, C. Zhu, S. Dong, J. Zhao, Mech. Mater. 137, 103144 (2019) CrossRefGoogle Scholar
  16. 16.
    I. Evazzade, I.P. Lobzenko, D. Saadatmand, E.A. Korznikova, K. Zhou, B. Liu, S.V. Dmitriev, Nanotechnology 29, 215704 (2018) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, T. Kitamura, Europhys. Lett. 80, 40008 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Doi, A. Nakatani, Procedia Eng. 10, 3393 (2011) CrossRefGoogle Scholar
  19. 19.
    L.Z. Khadeeva, S.V. Dmitriev, Y.S. Kivshar, JETP Lett. 94, 539 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    E.A. Korznikova, A.V. Savin, Y.A. Baimova, S.V. Dmitriev, R.R. Mulyukov, JETP Lett. 96, 222 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    E.A. Korznikova, J.A. Baimova, S.V. Dmitriev, Europhys. Lett. 102, 60004 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    V. Hizhnyakov, M. Klopov, A. Shelkan, Phys. Lett. A 380, 1075 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    I.P. Lobzenko, G.M. Chechin, G.S. Bezuglova, Y.A. Baimova, E.A. Korznikova, S.V. Dmitriev, Phys. Solid State 58, 633 (2016) ADSCrossRefGoogle Scholar
  24. 24.
    E. Barani, I.P. Lobzenko, E.A. Korznikova, E.G. Soboleva, S.V. Dmitriev, K. Zhou, A.M. Marjaneh, Eur. Phys. J. B 90, 38 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    E. Barani, E.A. Korznikova, A.P. Chetverikov, K. Zhou, S.V. Dmitriev, Phys. Lett. A 381, 3553 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    J.A. Baimova, E.A. Korznikova, I.P. Lobzenko, S.V. Dmitriev, Rev. Adv. Mater. Sci. 42, 68 (2015) Google Scholar
  27. 27.
    S.V. Dmitriev, E.A. Korznikova, Y.A. Baimova, M.G. Velarde, Phys.-Uspekhi 59, 446 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    I. Evazzade, I.P. Lobzenko, E.A. Korznikova, I.A. Ovid’ko, M.R. Roknabadi, S.V. Dmitriev, Phys. Rev. B 95, 035423 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    A.V. Savin, Y.S. Kivshar, Europhys. Lett. 89, 46001 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    G.M. Chechin, V.P. Sakhnenko, Physica D 117, 43 (1998) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G.M. Chechin, D.S. Ryabov, S.A. Shcherbinin, Phys. Rev. E 92, 012907 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    G.M. Chechin, S.A. Shcherbinin, Commun. Nonlinear Sci. Numer. Simul. 22, 244 (2015) ADSCrossRefGoogle Scholar
  33. 33.
    G.M. Chechin, D.S. Ryabov, S.A. Shcherbinin, Lett. Mater. 6, 9 (2016) CrossRefGoogle Scholar
  34. 34.
    V.M. Burlakov, S.A. Kiselev, V.I. Rupasov, Phys. Lett. A 147, 130 (1990) ADSCrossRefGoogle Scholar
  35. 35.
    V.M. Burlakov, S.A. Kiselev, V.I. Rupasov, J. Exp. Theor. Phys. Lett. 51, 544 (1990) Google Scholar
  36. 36.
    T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Physica D 121, 109 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    T. Dauxois, R. Khomeriki, F. Piazza, S. Ruffo, Chaos 15, 015110 (2005) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    E.A. Korznikova, D.V. Bachurin, S.Y. Fomin, A.P. Chetverikov, S.V. Dmitriev, Eur. Phys. J. B 90, 23 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    S.V. Dmitriev, E.A. Korznikova, D.I. Bokij, K. Zhou, Phys. Status Solidi B 253, 1310 (2016) ADSCrossRefGoogle Scholar
  40. 40.
    E.A. Korznikova, S.A. Shcherbinin, D.S. Ryabov, G.M. Chechin, E.G. Ekomasov, E.G. Soboleva, E. Barani, K. Zhou, S.V. Dmitriev, Phys. Status Solidi B 256, 1800061 (2019) ADSCrossRefGoogle Scholar
  41. 41.
    A.V. Savin, Y.S. Kivshar, B. Hu, Phys. Rev. B 82, 195422 (2010) ADSCrossRefGoogle Scholar
  42. 42.
    J.A. Baimova, B. Liu, S.V. Dmitriev, N. Srikanth, K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dina U. Abdullina
    • 1
  • Maria N. Semenova
    • 2
  • Aleksander S. Semenov
    • 2
  • Elena A. Korznikova
    • 3
    • 4
    Email author
  • Sergey V. Dmitriev
    • 3
    • 5
  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Mirny Polytechnic Institute (branch) of North-Eastern Federal UniversitySakha (Yakutia)Russia
  3. 3.Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the RASUfaRussia
  4. 4.Ufa State Aviation Technical UniversityUfaRussia
  5. 5.National Research Tomsk State UniversityTomskRussia

Personalised recommendations