Advertisement

Effects of temporally correlated noise on coherence resonance chimeras in FitzHugh-Nagumo neurons

  • Ying Xu
  • Lulu Lu
  • Mengyan Ge
  • Ya JiaEmail author
Regular Article
  • 29 Downloads

Abstract

Chimera state in neuronal network means the coexistence of coherent and incoherent firing patterns. In this paper, the FitzHugh-Nagumo (FHN) neuronal model is employed to investigate the coherent resonance chimeras induced by temporally correlated noises. We show that the oscillation state of neuronal system is influenced by the correlation time of noise, the reduction of correlation time can result in a smaller amplitude noise sufficient to maximize the coherent resonance. However, the coherent resonance chimeras can be observed by changing both noise intensity and correlation time in the nonlocally coupled FHN neural network. By virtue of statistical synchronization factor and coherence measurement, it is found that the region of noise intensity threshold for generating coherent resonance chimeras is increased with the increasing of correlation time. The collective behavior of the system is particularly sensitive to the variation of noise intensity when correlation time is greater than 0.1. Furthermore, we demonstrate that the variation of noise intensity or correlation time can cause coherent resonance multi-chimeras in the neural network.

Graphical abstract

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    D. Nozaki, D.J. Mar, P. Grigg, J.J. Collins, Phys. Rev. Lett. 82, 2402 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    B. Jia, H. Gu, Int. J. Bifurc. Chaos 27, 1750113 (2017) CrossRefGoogle Scholar
  3. 3.
    J. Wang, X. Guo, H. Yu, C. Liu, B. Deng, X. Wei, Y. Chen, Chaos Solitons Fractals 60, 40 (2014) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Zhou, J. Kurths, Phys. Rev. Lett. 88, 230602 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wang, Y. Lai, Z. Zheng, Phys. Rev. E 79, 056210 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    C. Zhou, J. Kurths, Phys. Rev. E 65, 040101 (2002) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Lin, C. Wang, Z. Wu, Eur. Phys. J. B 92, 113 (2019) ADSCrossRefGoogle Scholar
  8. 8.
    G. Malescio, Phys. Rev. E 53, 6551 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    M. Ozer, M. Perc, M. Uzuntarla, Phys. Lett. A 373, 964 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    K. Wiesenfeld, F. Moss, Nature 373, 33 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Xu, J. Li, F. Jing, H. Zhang, W. Xu, J. Duan, Eur. Phys. J. B 86, 198 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    M.C. Gimenez, Eur. Phys. J. B 89, 83 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Hu, T. Ditzinger, C.Z. Ning, H. Haken, Phys. Rev. Lett. 71, 807 (1993) ADSCrossRefGoogle Scholar
  15. 15.
    Q. Wang, M. Perc, Z. Duan, G. Chen, Phys. Lett. A 372, 5681 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    M. Perc, Chaos Solitons Fractals 31, 64 (2007) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Xu, Y. Jia, M. Ge, L. Lu, L. Yang, X. Zhan, Neurocomputing 283, 196 (2018) CrossRefGoogle Scholar
  18. 18.
    J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Eur. Phys. J. B 92, 54 (2019) ADSCrossRefGoogle Scholar
  19. 19.
    S. Mangioni, R. Deza, H.S. Wio, R. Toral, Phys. Rev. Lett. 79, 2389 (1997) ADSCrossRefGoogle Scholar
  20. 20.
    P. Hänggi, P. Jung, C. Zerbe, F. Moss, J. Stat. Phys. 70, 25 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    F. Duan, F. Chapeau-Blondeau, D. Abbott, PLoS ONE 9, e91345 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    H. Busch, M.-Th. Hütt, F. Kaiser, Phys. Rev. E 64, 021105 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Xu, J. Ma, H. Wang, Y. Li, J. Kurths, Eur. Phys. J. B 90, 194 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    H. L, Y. Xu, J. Kurths, X. Yue, Eur. Phys. J. B 92, 76 (2019) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Xu, H. Ying, Y. Jia, J. Ma, T. Hayat, Sci. Rep. 7, 43452 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    L. Lu, Y. Jia, J.B. Kirunda, Y. Xu, M. Ge, Q. Pei, L. Yang, Nonlinear Dyn. 95, 1673 (2019) CrossRefGoogle Scholar
  27. 27.
    X. Sun, Z. Liu, M. Perc, Nonlinear Dyn. 96, 2145 (2019) CrossRefGoogle Scholar
  28. 28.
    R. Wang, J. Li, M. Du, J. Lei, Y. Wu, Commun. Nonlinear Sci. 40, 80 (2016) CrossRefGoogle Scholar
  29. 29.
    R. Wang, Y. Zhu, Cogn. Neurodyn. 10, 1 (2016) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Xu, Y. Jia, J. Ma, T. Hayat, A. Alsaedi, Sci. Rep. 8, 1349 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Sci. Rep. 6, 30914 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    Z. Yao, J. Ma, Y. Yao, C. Wang, Nonlinear Dyn. 96, 205 (2019) CrossRefGoogle Scholar
  33. 33.
    Z. Rostamia, V-T. Pham, S. Jafari, F. Hadaeghic, J. Ma, Appl. Math. Comput. 338, 141 (2018) MathSciNetGoogle Scholar
  34. 34.
    M. Ge, Y. Jia, Y. Xu, L. Lu, H. Wang, Y. Zhao, Appl. Math. Comput. 352, 136 (2019) MathSciNetGoogle Scholar
  35. 35.
    M. Ge, Y. Jia, B.K. John, Y. Xu, J. Shen, L. Lu, Y. Liu, Q. Pei, X. Zhan, L. Yang, Neurocomputing 320, 60 (2018) CrossRefGoogle Scholar
  36. 36.
    L. Chua, V. Sbitnev, H. Kim, Int. J. Bifurc. Chaos 22, 1230011 (2012) CrossRefGoogle Scholar
  37. 37.
    B. Bao, A. Hu, H. Bao, Q. Xu, M. Chen, H. Wu, Complexity 2018, 3872573 (2018) Google Scholar
  38. 38.
    S. Wen, R. Hu, Y. Yang, Z. Zeng, T. Huang, Y. Song, IEEE Trans. Syst. Man Cybern. Syst. 49, 1787 (2019) CrossRefGoogle Scholar
  39. 39.
    S. Wang, Y. Cao, T. Huang, S. Wen, Appl. Math. Comput. 361, 294 (2019) MathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Wen, S. Xiao, Y. Yang, Z. Yan, Z. Zeng, T. Huang, IEEE Trans. Comput. Aid. Des. 38, 1084 (2019) CrossRefGoogle Scholar
  41. 41.
    Y. Xu, Y. Jia, H. Wang, Y. Liu, P. Wang, Y. Zhao, Nonlinear Dyn. 95, 3237 (2019) CrossRefGoogle Scholar
  42. 42.
    Y. Yao, M. Yi, D. Hou, Int. J. Mod. Phys. B 33, 1950053 (2019) ADSCrossRefGoogle Scholar
  43. 43.
    L. Lu, Y. Jia, Y. Xu, M. Ge, L. Yang, X. Zhan, Sci. China Technol. Sci. 62, 427 (2019) CrossRefGoogle Scholar
  44. 44.
    Y. Yao, H. Deng, M. Yi, J. Ma, Sci. Rep. 7, 43151 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, Europhys. Lett. 123, 48003 (2018) CrossRefGoogle Scholar
  46. 46.
    J. Tang, J. Zhang, J. Ma, J. Luo, Sci. China Inf. Sci. 62, 1134 (2019) CrossRefGoogle Scholar
  47. 47.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Europhys. Lett. 118, 10001 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    M. Shafiei, F. Parastesh, M. Jalili, S. Jafari, M. Perc, M. Slavinec, Eur. Phys. J. B 92, 36 (2019) ADSCrossRefGoogle Scholar
  49. 49.
    B.K. Bera, D. Ghosh, M. Lakshmanan, Phys. Rev. E 93, 012205 (2016) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    S. Rakshit, Z. Faghani, F. Parastesh, S. Panahi, S. Jafari, D. Ghosh, M. Perc, Phys. Rev. E 100, 012315 (2019) ADSCrossRefGoogle Scholar
  51. 51.
    S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2019) ADSCrossRefGoogle Scholar
  52. 52.
    M.L. Kelly, R.A. Peters, R.K. Tisdale, J.A. Lesku, J. Exp. Biol. 218, 3175 (2015) CrossRefGoogle Scholar
  53. 53.
    L.G. Dominguez, R.A. Wennberg, W. Gaetz, D. Cheyne, O.C. Snead, J.L.P. Velazquez, J. Neurosci. 25, 8077 (2005) CrossRefGoogle Scholar
  54. 54.
    R. FitzHugh, Biophys. J. 1, 445 (1961) ADSCrossRefGoogle Scholar
  55. 55.
    N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll, Phys. Rev. Lett. 117, 014102 (2016) ADSCrossRefGoogle Scholar
  56. 56.
    R.F. Fox, I.R. Gatland, R. Roy, G. Vemuri, Phys. Rev. A 38, 5938 (1988) ADSCrossRefGoogle Scholar
  57. 57.
    I. Omelchenko, Y.L. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011) ADSCrossRefGoogle Scholar
  58. 58.
    M. Wolfrum, O.E. Omelchenko, S. Yanchuk, Y.L. Maistrenko, Chaos 21, 013112 (2011) ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    M. Yi, L. Yang, Phys. Rev. E 81, 061924 (2010) ADSCrossRefGoogle Scholar
  60. 60.
    I. Franovic, K. Todorovic, N. Vasovic, N. Buric, Phys. Rev. Lett. 108, 094101 (2012) ADSCrossRefGoogle Scholar
  61. 61.
    S. Brandstetter, M.A. Dahlem, E. Schöll, Philos. Trans. R. Soc. London A 28, 391 (2010) ADSCrossRefGoogle Scholar
  62. 62.
    S. Majhi, D. Ghosh, Chaos 28, 083113 (2018) ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Y. Xu, Y. Jia, J.B. Kirunda, J. Shen, M. Ge, L. Lu, Q. Pei, Complexity 2018, 3012743 (2018) Google Scholar
  64. 64.
    X. Hu, C. Liu, L. Liu, J. Ni, Y. Yao, Nonlinear Dyn. 91, 1541 (2017) CrossRefGoogle Scholar
  65. 65.
    Y. Xu, J. Ma, X. Zhan, L. Yang, Y. Jia, Cogn. Neurodyn. (2019),  https://doi.org/10.1007/s11571-019-09547-8
  66. 66.
    Y. Liu, J. Ma, Y. Xu, Y. Jia, Int. J. Bifurc. Chaos 29, 19501562 (2019) Google Scholar
  67. 67.
    J. Ma, G. Zhang, T. Hayat, G. Ren, Nonlinear Dyn. 95, 1585 (2019) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCentral China Normal UniversityWuhanP.R. China

Personalised recommendations