Advertisement

Radiative and non-radiative exciton recombination rate constants in ZnSe clusters

  • 28 Accesses

Abstract

Understanding the origin of photoluminescence intermittency and its correlation with microstructure is crucial for the design and preparation of quantum dots (QDs) with high fluorescence quantum yield. ZnSe clusters provide a typical model for studying the effect of their size, geometrical and electronic structures on their radiative and non-radiative process of II-VI QDs. The rate constants of radiative and non-radiative processes, kr and knr, of the (ZnSe)n clusters were computed by using first-principles calculations, Einstein spontaneous radiation theory and Fermi’s golden rule. The kr and knr variations with cluster size were analyzed in term of a number of quantities. Emission energy and reorganization energy were identified to play dominant roles in the determination of kr and knr for the studied clusters. Furthermore, a correlation between these two quantities and the geometric rigidity of the ZnSe clusters was revealed. The clusters with greater geometric rigidity tend to possess larger emission energy, and smaller reorganization energy. While radiative and non-radiative electron–hole recombination rates of the ZnSe clusters vary in a complicated way because of their diverse structures and prominent quantum size effect, our study highlights the correlation between recombination rate and cluster structure, which would be helpful for the design of QD materials with high fluorescence quantum yields.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    V.I. Klimov , A.A. Mikhailovsky , M.G. Bawendi , Science 290 , 314 (2000)

  2. 2.

    C. Dang , J. Lee , C. Breen , J.S. Steckel , S. Coe-Sullivan , A. Nurmikko , Nat. Nanotechnol. 7 , 1 (2012)

  3. 3.

    Y.S. Park , W.K. Bae , T. Baker , J. Lim , V.I. Klimov , Nano Lett. 15 , 7319 (2015)

  4. 4.

    A.G. Pattantyus-Abraham , I.J. Kramer , A.R. Barkhouse , X. Wang , G. Konstantatos , R. Debnath , L. Levina , I. Raabe , M.K. Nazeeruddin , M. Gratzel , E.H. Sargent , ACS Nano 4 , 3374 (2010)

  5. 5.

    E.H. Sargent , Nat. Photonics 6 , 133 (2012)

  6. 6.

    R. Gill , M. Zayats , I. Willner , Angew. Chem. Int. Ed 47 , 7602 (2008)

  7. 7.

    I.L. Medintz , H. Mattoussi , Phys. Chem. Chem. Phys. 11 , 17 (2009)

  8. 8.

    M. Bruchez , M. Moronne , P. Gin , S. Weiss , A.P. Alivisatos , Science 281 , 2013 (1998)

  9. 9.

    W.C. Chan , S. Nie , Science 281 , 2016 (1998)

  10. 10.

    X. Michalet , F.F. Pinaud , L.A. Bentolila , J.M. Tsay , S. Doose , J.J. Li , G. Sundaresan , A.M. Wu , S.S. Gambhir , S. Weiss , Science 307 , 538 (2005)

  11. 11.

    M. Nirmal , B.O. Dabbousi , M.G. Bawendi , J.J. Macklin , J.K. Trautman , T.D. Harris , L.E. Brus , Nature 383 , 802 (1996)

  12. 12.

    A.L. Efros , D.J. Nesbitt , Nat. Nanotechnol. 11 , 661 (2016)

  13. 13.

    A.L. Efros , M. Rosen , Phys. Rev. Lett. 78 , 1110 (1997)

  14. 14.

    P.A. Frantsuzov , S. Volkan-Kacso , B. Janko , Phys. Rev. Lett. 103 , 207402 (2009)

  15. 15.

    C. Galland , Y. Ghosh , A. Steinbruck , M. Sykora , J.A. Hollingsworth , V.I. Klimov , H. Htoon , Nature 479 , 203 (2011)

  16. 16.

    G. Yuan , D.E. Gomez , N. Kirkwood , K. Boldt , P. Mulvaney , ACS Nano 12 , 3397 (2018)

  17. 17.

    A. Zhang , C. Dong , H. Liu , J. Ren , J. Phys. Chem. C 117 , 24592 (2013)

  18. 18.

    C. Dong , H. Liu , A. Zhang , J. Ren , Chem. Eur. J. 20 , 1940 (2014)

  19. 19.

    B. Mahler , P. Spinicelli , S. Buil , X. Quelin , J.P. Hermier , B. Dubertret , Nat. Mater. 7 , 659 (2008)

  20. 20.

    X. Peng , M.C. Schlamp , A.V. Kadavanich , A.P. Alivisatos , J. Am. Chem. Soc. 119 , 7019 (1997)

  21. 21.

    J.J. Li , Y.A. Wang , W. Guo , J.C. Keay , T.D. Mishima , M.B. Johnson , X. Peng , J. Am. Chem. Soc. 125 , 12567 (2003)

  22. 22.

    Y.S. Park , W.K. Bae , J.M. Pietryga , V.I. Klimov , ACS Nano 8 , 7288 (2014)

  23. 23.

    Y.S. Park , W.K. Bae , L.A. Padilha , J.M. Pietryga , V.I. Klimov , Nano Lett. 14 , 396 (2014)

  24. 24.

    G.E. Cragg , A.L. Efros , Nano Lett. 10 , 313 (2010)

  25. 25.

    X. Wang , X. Ren , K. Kahen , M.A. Hahn , M. Rajeswaran , S. Maccagnano-Zacher , J. Silcox , G.E. Cragg , A.L. Efros , T.D. Krauss , Nature 459 , 686 (2009)

  26. 26.

    W.K. Bae , L.A. Padilha , Y.S. Park , H. McDaniel , I. Robel , J.M. Pietryga , V.I. Klimov , ACS Nano 7 , 3411 (2013)

  27. 27.

    S. Kaniyankandy , S. Rawalekar , H.N. Ghosh , J. Mater. Chem. C 1 , 2755 (2013)

  28. 28.

    O. Voznyy , E.H. Sargent , Phys. Rev. Lett. 112 , 157401 (2014)

  29. 29.

    Y. Shu , B.S. Fales , W.T. Peng , B.G. Levine , J. Phys. Chem. Lett. 8 , 4091 (2017)

  30. 30.

    B. Goswami , S. Pal , P. Sarkar , G. Seifert , M. Springborg , Phys. Rev. B 73 , 205312 (2006)

  31. 31.

    B. Goswami , S. Pal , P. Sarkar , Phys. Rev. B 76 , 045323 (2007)

  32. 32.

    J.M. Matxain , J.M. Mercero , J.E. Fowler , J.M. Ugalde , Phys. Rev. A 64 , 053201 (2001)

  33. 33.

    P. Deglmann , R. Ahlrichs , K. Tsereteli , J. Chem. Phys. 116 , 1585 (2002)

  34. 34.

    S.P. Nanavati , V. Sundararajan , S. Mahamuni , V. Kumar , S.V. Ghaisas , Phys. Rev. B 80 , 245417 (2009)

  35. 35.

    M.A. Zwijnenburg , Nanoscale 3 , 3780 (2011)

  36. 36.

    M.A. Zwijnenburg , Phys. Chem. Chem. Phys. 15 , 11119 (2013)

  37. 37.

    A. Burnin , E. Sanville , J.J. BelBruno , J. Phys. Chem. A 109 , 5026 (2005)

  38. 38.

    Y. Zhao , D.G. Truhlar , J. Chem. Phys. 125 , 194101 (2006)

  39. 39.

    J.M. Azpiroz , J.M. Ugalde , I. Infante , J. Chem. Theory Comput. 10 , 76 (2014)

  40. 40.

    P.J. Hay , W.R. Wadt , J. Chem. Phys. 82 , 270 (1985)

  41. 41.

    P.J. Hay , W.R. Wadt , J. Chem. Phys. 82 , 299 (1985)

  42. 42.

    D.L. Isac , A. Airinei , D. Maftei , I. Humelnicu , F. Mocci , A. Laaksonen , M. Pinteala , J. Phys. Chem. A 123 , 5525 (2019)

  43. 43.

    T. Yanai , D.P. Tew , N.C. Handy , Chem. Phys. Lett. 393 , 51 (2004)

  44. 44.

    E.K.U. Gross , W. Kohn , Adv. Quantum Chem 21 , 255 (1990)

  45. 45.

    M. Kasha , Discuss. Faraday Soc. 9 , 14 (1950)

  46. 46.

    E. Cancés , B. Mennucci , J. Tomasi , J. Chem. Phys. 107 , 3032 (1997)

  47. 47.

    M.J. Frisch , G.W. Trucks , H.B. Schlegel , G.E. Scuseria , M.A. Robb , J.R. Cheeseman , G. Scalmani , V. Barone , G.A. Petersson , H. Nakatsuji , X. Li , M. Caricato , A.V. Marenich , J. Bloino , B.G. Janesko , R. Gomperts , B. Mennucci , H.P. Hratchian , J.V. Ortiz , A.F. Izmaylov , J.L. Sonnenberg , D. Williams-Young , F. Ding , F. Lipparini , F. Egidi , J. Goings , B. Peng , A. Petrone , T. Henderson , D. Ranasinghe , V.G. Zakrzewski , J. Gao , N. Rega , G. Zheng , W. Liang , M. Hada , M. Ehara , K. Toyota , R. Fukuda , J. Hasegawa , M. Ishida , T. Nakajima , Y. Honda , O. Kitao , H. Nakai , T. Vreven , K. Throssell , J.A. Montgomery, Jr. , J.E. Peralta , F. Ogliaro , M.J. Bearpark , J.J. Heyd , E.N. Brothers , K.N. Kudin , V.N. Staroverov , T.A. Keith , R. Kobayashi , J. Normand , K. Raghavachari , A.P. Rendell , J.C. Burant , S.S. Iyengar , J. Tomasi , M. Cossi , J.M. Millam , M. Klene , C. Adamo , R. Cammi , J.W. Ochterski , R.L. Martin , K. Morokuma , O. Farkas , J.B. Foresman , D.J. Fox , Gaussian 16, Revision C. (Gaussian Inc. Wallingford CT, 2016)

  48. 48.

    J.R. Kuklinski , S. Mukamel , Chem. Phys. Lett 189 , 119 (1992)

  49. 49.

    N.K. Swenson , M.A. Ratner , E.A. Weiss , J. Phys. Chem. C 120 , 6859 (2016)

  50. 50.

    K. Zhang , L. Cai , J. Fan , Y. Zhang , L. Lin , C.-K. Wang , Spectrochim. Acta Part A 209 , 248 (2019)

  51. 51.

    Z. Zhu , Y. Zhao , W. Liang , J. Comput. Chem. 40 , 997 (2019)

  52. 52.

    S. Feng , K. Wen , Y. Si , X. Guo , J. Zhang , J. Comput. Chem. 39 , 2601 (2018)

  53. 53.

    Q. Zhu , X. Guo , J. Zhang , J. Comput. Chem. 40 , 1578 (2019)

  54. 54.

    J. Zheng , Y.K. Kang , M.J. Therien , D.N. Beratan , J. Am. Chem. Soc. 127 , 11303 (2005)

  55. 55.

    W. Zhang , W. Zhu , W. Liang , Y. Zhao , S.F. Nelsen , J. Phys. Chem. B 112 , 11079 (2008)

  56. 56.

    Y. Gao , S. Zhang , Y. Pan , L. Yao , H. Liu , Y. Guo , Q. Gu , B. Yang , Y. Ma , Phys. Chem. Chem. Phys. 18 , 24176 (2016)

  57. 57.

    S. Biswas , A. Pramanik , S. Pal , P. Sarkar , J. Phys. Chem. C 121 , 2574 (2017)

  58. 58.

    T. Lu , F. Chen , J. Comput. Chem. 33 , 580 (2012)

  59. 59.

    S. Grimme , J. Antony , S. Ehrlich , H. Krieg , J. Chem. Phys. 132 , 154104 (2010)

  60. 60.

    Z.R. Grabowski , K. Rotkiewicz , W. Rettig , Chem. Rev. 103 , 3899 (2003)

  61. 61.

    F.L. Hirshfeld , Theoret. Claim. Acta 44 , 129 (1977)

  62. 62.

    Y. Wang , P. Bao , J. Wang , R. Jia , F.Q. Bai , H.X. Zhang , Inorg. Chem. 57 , 6561 (2018)

  63. 63.

    Y. Chen , A. Ren , Z. Yang , T. He , X. Ding , H. Zhang , L. Zou , Phys. Chem. Chem. Phys. 20 , 9419 (2018)

  64. 64.

    G. Overney , W. Zhong , D. Tomanek , Z. Phys. D 27 , 93 (1993)

  65. 65.

    J.H. Jia , Q.M. Wang , J. Am. Chem. Soc. 131 , 16634 (2009)

  66. 66.

    K. Pyo , V.D. Thanthirige , K. Kwak , P. Pandurangan , G. Ramakrishna , D. Lee , J. Am. Chem. Soc. 137 , 8244 (2015)

  67. 67.

    Z. Gan , Y. Lin , L. Luo , G. Han , W. Liu , Z. Liu , C. Yao , L. Weng , L. Liao , J. Chen , X. Liu , Y. Luo , C. Wang , S. Wei , Z. Wu , Angew. Chem. Int. Ed 55 , 11567 (2016)

  68. 68.

    M. Bixon , J. Jortner , J. Cortes , H. Heitele , M.E. Michel-Beyerle , J. Phys. Chem. 98 , 7289 (1994)

  69. 69.

    J.S. Wilson , N. Chawdhury , M.R.A. Al-Mandhary , M. Younus , M.S. Khan , P.R. Raithby , A. Köhler , R.H. Friend , J. Am. Chem. Soc. 123 , 9412 (2001)

  70. 70.

    R. Englman , J. Jortner , Mol. Phys. 18 , 145 (1970)

  71. 71.

    S.D. Dimitrov , B.C. Schroeder , C.B. Nielsen , H. Bronstein , Z. Fei , I. McCulloch , M. Heeney , J.R. Durrant , Polymers 8 , 1 (2016)

  72. 72.

    K. Kwak , V.D. Thanthirige , K. Pyo , D. Lee , G. Ramakrishna , J. Phys. Chem. Lett. 8 , 4898 (2017)

  73. 73.

    C. Javaux , B. Mahler , B. Dubertret , A. Shabaev , A.V. Rodina , A.L. Efros , D.R. Yakovlev , F. Liu , M. Bayer , G. Camps , L. Biadala , S. Buil , X. Quelin , J.P. Hermier , Nat. Nanotechnol. 8 , 206 (2013)

  74. 74.

    L.A. Lane , A.M. Smith , T. Lian , S. Nie , J. Phys. Chem. B 118 , 14140 (2014)

Download references

Author information

Correspondence to Mingli Yang.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-100406-y.

Electronic supplementary material

Supplementary file supplied by authors.

PDF file

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, N., Yu, S., Xie, Y. et al. Radiative and non-radiative exciton recombination rate constants in ZnSe clusters . Eur. Phys. J. B 92, 280 (2019) doi:10.1140/epjb/e2019-100406-y

Download citation

Keywords

  • Mesoscopic and Nanoscale Systems