Advertisement

First-principles study of the formation energies and positron lifetimes of vacancies in the Yttrium-Aluminum Garnet Y3Al5O12

  • A. G. MarinopoulosEmail author
Regular Article
  • 9 Downloads

Abstract

Lattice vacancies are a major concern for the use of the Y3Al5O12 garnet (YAG) in optical applications. They are known to trap charge carriers preventing them from reaching luminescence centers. This reduces useful photon emission and deteriorates performance. Recent efforts to characterize such defects include experimental works by positron-annihilation spectroscopy (PAS) where extensive positron trapping was reported and attributed to defects made up of both cation and oxygen vacancies. The present study reports first-principles calculations for monovacancy and divacancy defects in YAG by means of conventional and two-component density-functional theory. The defect formation energies and corresponding charge-transition levels in the gap were initially determined. The ability of the lower-energy defects to act as positron-trapping centers was then examined. Corresponding positron lifetimes and binding energies to defects were calculated and compared to the experimental PAS data. The lifetimes of aluminum monovacancies agreed well with experiment if gradient corrections are included in the electron-positron correlation. Association of oxygen with aluminum vacancies was found to lead to stable negatively-charged divacancy complexes which also trap positrons. These defects are characterized by longer positron lifetimes, in agreement with the experimental observations.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    R.C. Powell, Physics of Solid State Laser Materials (Springer-Verlag, New York, 1998) Google Scholar
  2. 2.
    D.J. Robbins, B. Cockayne, B. Lent, C.N. Duckworth, J.L. Glasper, Phys. Rev. B 19, 1254 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    C.R. Varney, D.T. Mackay, A. Pratt, S.M. Reda, F.A. Selim, J. Appl. Phys. 111, 063505 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, J. Appl. Phys. 112, 023522 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    E. Zych, C. Brecher, J. Glodo, J. Phys.: Condens. Matter 12, 1947 (2000) ADSGoogle Scholar
  6. 6.
    F.A. Selim, C.R. Varney, M.C. Tarun, M.C. Rowe, G.S. Collins, M.D. McCluskey, Phys. Rev. B 88, 174102 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, M.D. McCluskey, Results Phys. 5, 28 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    A. Dupasquier, A.P. Mills Jr. (eds), Positron Spectroscopy of Solids (IOS Press, Amsterdam, Oxford, Tokyo, Washington, DC, 1995) Google Scholar
  10. 10.
    F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    J. Čížek, O. Melikhova, I. Procházka, J. Kuriplach, R. Kužel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Phys. Rev. B 81, 024116 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Geller, Z. Kristallogr. 125, 1 (1967) CrossRefGoogle Scholar
  13. 13.
    M.J. Puska, R.M. Nieminen, J. Phys. F: Met. Phys. 13, 333 (1983) ADSCrossRefGoogle Scholar
  14. 14.
    H.E. Hansen, R.M. Nieminen, M.J. Puska, J. Phys. F: Met. Phys. 14, 1299 (1984) ADSCrossRefGoogle Scholar
  15. 15.
    S. Hautakangas, I. Makkonen, V. Ranki, M.J. Puska, K. Saarinen, X. Xu, D.C. Look, Phys. Rev. B 73, 193301 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    I. Makkonen, M.J. Puska, Phys. Rev. B 76, 054119 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Mackie, S. Singh, J. Laverock, S.B. Dugdale, D.J. Keeble, Phys. Rev. B 79, 014102 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Cížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Phys. Rev. B 79, 115212 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    D.J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R.A. Mackie, W. Egger, Phys. Rev. Lett. 105, 226102 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    C. Rauch, I. Makkonen, F. Tuomisto, Phys. Rev. B 84, 125201 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, Phys. Rev. B 87, 235207 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    J. Wiktor, M.-F. Barthe, G. Jomard, M. Torrent, M. Freyss, M. Bertolus, Phys. Rev. B 90, 184101 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    I. Makkonen, E. Korhonen, V. Prozheeva, F. Tuomisto, J. Phys.: Condens. Matter 28, 224002 (2016) ADSGoogle Scholar
  24. 24.
    J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, J. Phys.: Condens. Matter 29, 035503 (2017) ADSGoogle Scholar
  25. 25.
    A.G. Marinopoulos, J. Phys.: Condens. Matter 31, 315503 (2019) ADSGoogle Scholar
  26. 26.
    J. Chen, T.C. Lu, Y. Xu, A.G. Xu, D.Q. Chen, J. Phys.: Condens. Matter 20, 325212 (2008) Google Scholar
  27. 27.
    Z. Li, B. Liu, J. Wang, L. Sun, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 95, 3628 (2012) CrossRefGoogle Scholar
  28. 28.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  29. 29.
    W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965) ADSCrossRefGoogle Scholar
  30. 30.
    B. Chakraborty, Phys. Rev. B 24, 7423 (1981) ADSCrossRefGoogle Scholar
  31. 31.
    B. Chakraborty, R.W. Siegel, Phys. Rev. B 27, 4535 (1983) ADSCrossRefGoogle Scholar
  32. 32.
    E. Borónski, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986) ADSCrossRefGoogle Scholar
  33. 33.
    F. Euler, J.A. Bruce, Acta Crystallogr. 19, 971 (1965) CrossRefGoogle Scholar
  34. 34.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) ADSCrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  37. 37.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  38. 38.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994) ADSCrossRefGoogle Scholar
  39. 39.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  40. 40.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  41. 41.
    Y.-N. Xu, W.Y. Ching, Phys. Rev. B 59, 10530 (1999) ADSCrossRefGoogle Scholar
  42. 42.
    A.B. Munoz-Garcia, E. Anglada, L. Seijo, Int. J. Quantum Chem. 109, 1991 (2009) ADSCrossRefGoogle Scholar
  43. 43.
    G.A. Slack, D.W. Oliver, R.M. Chrenko, S. Roberts, Phys. Rev. 177, 1308 (1969) ADSCrossRefGoogle Scholar
  44. 44.
    M. Marsman, J. Paier, A. Stroppa, G. Kresse, J. Phys.: Condens. Matter 20, 064201 (2008) ADSGoogle Scholar
  45. 45.
    G. Makov, M.C. Payne, Phys. Rev. B 51, 4014 (1995) ADSCrossRefGoogle Scholar
  46. 46.
    M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson, J. Eur. Ceram. Soc. 26, 3515 (2006) CrossRefGoogle Scholar
  47. 47.
    X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M.J.T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J.W. Zwanziger, Comput. Phys. Commun. 205, 106 (2016) ADSCrossRefGoogle Scholar
  48. 48.
    J. Wiktor, G. Jomard, M. Torrent, Phys. Rev. B 92, 125113 (2015) ADSCrossRefGoogle Scholar
  49. 49.
    N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, Comput. Phys. Commun. 135, 329 (2001) ADSCrossRefGoogle Scholar
  50. 50.
    M.J. Puska, A.P. Seitsonen, R.M. Nieminen, Phys. Rev. B 52, 10947 (1995) ADSCrossRefGoogle Scholar
  51. 51.
    B. Barbiellini, M.J. Puska, T. Torsti, R.M. Nieminen, Phys. Rev. B 51, 7341 (1995) ADSCrossRefGoogle Scholar
  52. 52.
    B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B 53, 16201 (1996) ADSCrossRefGoogle Scholar
  53. 53.
    J. Kuriplach, B. Barbiellini, Phys. Rev. B 89, 155111 (2014) ADSCrossRefGoogle Scholar
  54. 54.
    B. Barbiellini, J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015) ADSCrossRefGoogle Scholar
  55. 55.
    L. Schuh, R. Metselaar, C.R.A. Catlow, J. Eur. Ceram. Soc. 7, 67 (1991) CrossRefGoogle Scholar
  56. 56.
    M.M. Kuklja, R. Pandey, J. Am. Ceram. Soc. 82, 2881 (1999) CrossRefGoogle Scholar
  57. 57.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011) CrossRefGoogle Scholar
  58. 58.
    A. Kokalj, Comput. Mater. Sci. 28, 155 (2003) CrossRefGoogle Scholar
  59. 59.
    M.J. Puska, J. Phys.: Condens. Matter 3, 3455 (1991) ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CFisUC, Department of Physics, University of CoimbraCoimbraPortugal

Personalised recommendations