Advertisement

Symmetry considerations on band filling and first optical transition in NiO

  • John E. PetersenEmail author
  • Luisa M. Scolfaro
  • Pablo D. Borges
  • Wilhelmus J. Geerts
Regular Article
  • 35 Downloads

Abstract

Recent theoretical works on NiO have not agreed upon the nature of the first optical transition. By altering band filling – with highly concentrated O vacancies and Fe impurities – here, the orbital density of states is changed near the Fermi energy. The variation in optical properties, relative to the changes in orbital character, along with group theory analysis of hybridized orbitals, provides new insight when evaluating the first optical transition of NiO. Here, based on density functional theory, the first optical transition is found to have two possibilities – either superexchange site-hopping or a transition from the hybridized eg state to the hybridized a1u state, rather than the intra-atomic transitions which are causing disagreement in the recent literature.

Graphical abstract

Keywords

Computational Methods 

Notes

Author contribution statement

JEP wrote the bulk of the paper, performed the bulk of the calculations, and made most of the figures. PDB performed the HSE06 calculations at a later date and added the associated text and graph. LMS and WJG were co-PIs of this work. They have helped greatly along the way in terms of scientific advice and direction.

References

  1. 1.
    K.-W. Nam, K.-B. Kim, J. Electrochem. Soc. 149, A346 (2002) Google Scholar
  2. 2.
    X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 17, 10898 (2011) Google Scholar
  3. 3.
    R. Vardimon, M. Klionsky, O. Tal, Nano Lett. 15, 3894 (2015) ADSGoogle Scholar
  4. 4.
    R.C. Korošec, P. Bukovec, Acta Chim. Slov. 53, 136 (2006) Google Scholar
  5. 5.
    I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, V. Rehacek, Sens. Actuators B 78, 126 (2001) Google Scholar
  6. 6.
    J.Y. Son, Y.H. Shin, Appl. Phys. Lett. 92, 1 (2008) Google Scholar
  7. 7.
    T.G. Seong, M.R. Joung, J.W. Sun, M.K. Yang, J.K. Lee, J.W. Moon, J. Roh, S. Nahm, Jpn. J. Appl. Phys. 51, 041102 (2012) ADSGoogle Scholar
  8. 8.
    G. Ma, X. Tang, H. Zhang, Z. Zhong, J. Li, H. Su, Microelectr. Eng. 139, 43 (2015) Google Scholar
  9. 9.
    C. Cagli, F. Nardi, D. Ielmini, IEEE Trans. Electron Devices 56, 1712 (2009) ADSGoogle Scholar
  10. 10.
    J.A. Dawson, Y. Guo, J. Robertson, Appl. Phys. Lett. 107, 2 (2015) Google Scholar
  11. 11.
    G.S. Park, X.S. Li, D.C. Kim, R.J. Jung, M.J. Lee, S. Seo, Appl. Phys. Lett. 91, 9 (2007) Google Scholar
  12. 12.
    H.Y. Peng, Y.F. Li, W.N. Lin, Y.Z. Wang, X.Y. Gao, T. Wu, Sci. Rep. 2, 442 (2012) ADSGoogle Scholar
  13. 13.
    S. Park, H.S. Ahn, C.K. Lee, H. Kim, H. Jin, H.S. Lee, S. Seo, J. Yu, S. Han, Phys. Rev. B 77, 1 (2008) Google Scholar
  14. 14.
    B. Magyari-Köpe, S.G. Park, H.D. Lee, Y. Nishi, J. Mater. Sci. 47, 7498 (2012) ADSGoogle Scholar
  15. 15.
    S. Lany, J. Osorio-Guillén, A. Zunger, Phys. Rev. B 75, 1 (2007) Google Scholar
  16. 16.
    J. Yu, K.M. Rosso, S.M. Bruemmer, J. Phys. Chem. C 116, 1948 (2012) Google Scholar
  17. 17.
    H.D. Lee, B. Magyari-Köpe, Y. Nishi, Phys. Rev. B 81, 1 (2010) Google Scholar
  18. 18.
    C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Phys. Rev. B 79, 1 (2009) Google Scholar
  19. 19.
    J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985) ADSGoogle Scholar
  20. 20.
    D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970) ADSGoogle Scholar
  21. 21.
    A. Fujimori, F. Minami, S. Sugano, Phys. Rev. B 29, 5225 (1984) ADSGoogle Scholar
  22. 22.
    A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984) ADSGoogle Scholar
  23. 23.
    G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984) ADSGoogle Scholar
  24. 24.
    J. Zaanen, G.A. Sawatzky, J. Solid State Chem. 88, 8 (1990) ADSGoogle Scholar
  25. 25.
    J. Petersen, F. Twagirayezu, P.D. Borges, L. Scolfaro, W. Geerts, MRS Adv. 1, 2617 (2016) Google Scholar
  26. 26.
    A. Ghosh, C.M. Nelson, L.S. Abdallah, S. Zollner, J. Vac. Sci. Technol. A 33, 061203 (2015) Google Scholar
  27. 27.
    R. Gillen, J. Robertson, J. Phys.: Condens. Matter 25, 165502 (2013) ADSGoogle Scholar
  28. 28.
    C. Rödl, F. Bechstedt, Phys. Rev. B 86, 1 (2012) Google Scholar
  29. 29.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991) ADSGoogle Scholar
  30. 30.
    S.L. Dudarev, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) ADSGoogle Scholar
  31. 31.
    H. Shin, Y. Luo, P. Ganesh, J. Balachandran, J.T. Krogel, P.R.C. Kent, A. Benali, O. Heinonen, Phys. Rev. Mater. 1, 73603 (2017) Google Scholar
  32. 32.
    A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006) ADSGoogle Scholar
  33. 33.
    V. Raghavan, J. Phase Equilib. Diffus. 31, 369 (2010) Google Scholar
  34. 34.
    M.S. Compton, N.A. Simpson, E.G. LeBlanc, M.A. Robinson, W.J. Geerts, MRS Proc. 1708, mrss14 (2014) Google Scholar
  35. 35.
    M.A.A. Talukder, Y. Cui, M. Compton, W. Geerts, L. Scolfaro, S. Zollner, MRS Adv. 1, 3361 (2016) Google Scholar
  36. 36.
    A.K. Bandyopadhyay, S.E. Rios, A. Tijerina, C.J. Gutierrez, J. Alloys Compd. 369, 217 (2004) Google Scholar
  37. 37.
    Y. Wensheng, W. Weng, G. Zhang, Z. Sun, Q. Liu, Z. Pan, Y. Guo, P. Xu, S. Wei, Y. Zhang, S. Yan, Appl. Phys. Lett. 92, 52508 (2008) Google Scholar
  38. 38.
    M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 45112 (2006) ADSGoogle Scholar
  39. 39.
    J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSGoogle Scholar
  40. 40.
    J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997) ADSGoogle Scholar
  41. 41.
    A. Rohrbach, J. Hafner, G. Kresse, Phys. Rev. B 69, 75413 (2004) ADSGoogle Scholar
  42. 42.
    S. Baroni, R. Resta, Phys. Rev. B 33, 7017 (1986) ADSGoogle Scholar
  43. 43.
    F. Birch, Phys. Rev. 71, 809 (1947) ADSGoogle Scholar
  44. 44.
    A.K. Cheetham, D.A.O. Hope, Phys. Rev. B 27, 6964 (1983) ADSGoogle Scholar
  45. 45.
    F.A. Cotton,Chemical Applications of Group Theory (John Wiley and Sons Inc., New York, 1990) Google Scholar
  46. 46.
    J.E. Petersen, F. Twagirayezu, L.M. Scolfaro, P.D. Borges, W.J. Geerts, AIP Adv. 7, (2017) Google Scholar
  47. 47.
    M.S. Dresselhaus, G. Dresselhaus, A. (Ado) Jorio,Group Theory: Application to the Physics of Condensed Matter (2008) Google Scholar
  48. 48.
    Y. Tokura, N. Nagaosa, Science 288, 462 (2000) ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • John E. Petersen
    • 1
    Email author
  • Luisa M. Scolfaro
    • 1
  • Pablo D. Borges
    • 1
    • 2
  • Wilhelmus J. Geerts
    • 1
  1. 1.Department of PhysicsTexas State UniversitySan MarcosUSA
  2. 2.Instituto de Ciencias Exatas e Tecnologia, Universidade Federal de Vicosa, Campus de Rio ParanaíbaRio ParanaíbaBrazil

Personalised recommendations