Advertisement

Ultrascalability and electron transport properties of ultra-thin film phase change material Ge2Sb2Te5

  • 33 Accesses

Abstract

In the present work, we have used ab initio molecular dynamics (AIMD) and non-equilibrium Green’s function (NEGF) formalism to investigate the scaling behavior of electron transport in ultra-thin films of Ge2Sb2Te5 (GST). The relation between the thickness of GST and its electron transport properties are studied in both crystalline (c-GST) and amorphous (a-GST) phases. For thin films with lower than 36 Å thickness, we have observed a dramatic increase in the conductivity of the amorphous phase and an associated reduction in the conductance contrast between the two phases. Metal-induced gap states (MIGS) near the electrodes are observed in the density of states and the transmission coefficient of a-GST. The disappearance of the bandgap of a-GST due to the overlap of MIGS is responsible for the sharp reduction of crystalline to amorphous conductance ratio (ON/OFF). The ON/OFF ratio of the devices is about one order of magnitude upon downscaling the ultra-thin film of the active bit to 36 Å. This estimation is the ultimate scalability for the simulated PCM device. When the thickness of GST further scales down, the reliable read operation is not possible. Our results show very good agreement with experimental work and it seems promising to engineers and designers of ultra-thin PCM devices.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    V.L. Deringer, R. Dronskowski, M. Wuttig, Adv. Funct. Mater. 25, 6343 (2015)

  2. 2.

    J. Liang, R.G.D. Jeyasingh, H.Y. Chen, H.S.P. Wong, IEEE Trans. Electron Dev. 59, 1155 (2012)

  3. 3.

    F. Xiong, A.D. Liao, D. Estrada, E. Pop, Science 332, 568 (2011)

  4. 4.

    F. Xiong, M.H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013)

  5. 5.

    A. Liao, Y. Zhao, E. Pop, Phys. Rev. Lett. 101, 256804 (2008)

  6. 6.

    D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012)

  7. 7.

    W. Wang, D. Loke, L. Shi, R. Zhao, H. Yang, L.T. Law, L.T. Ng, K.G. Lim, Y.C. Yeo, T.C. Chong, A.L. Lacaita, Sci. Rep. 2, 360 (2012)

  8. 8.

    J. Liu, M.P. Anantram, J. Appl. Phys. 113, 063711 (2013)

  9. 9.

    J. Liu, X. Xu, M.P. Anantram, J. Comput. Electr. 13, 620 (2014)

  10. 10.

    J. Liu, X. Xu, M.P. Anantram, IEEE Electr. Dev. Lett. 35, 533 (2014)

  11. 11.

    S.G. Sarwat, P. Gehring, G. Rodriguez Hernandez, J.H. Warner, G.A.D. Briggs, J.A. Mol, H. Bhaskaran, Nano Lett. 17, 3688 (2017)

  12. 12.

    S. Kim, B.J. Bae, Y. Zhang, R.G.D. Jeyasingh, Y. Kim, I.G. Baek, S. Park, S.W. Nam, H.S.P. Wong, IEEE Trans. Electr. Dev. 58, 1483 (2011)

  13. 13.

    R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, H. Tanida, Nano Lett. 10, 414 (2010)

  14. 14.

    N. Yamada, T. Matsunaga, J. Appl. Phys. 88, 7020 (2000)

  15. 15.

    B. Zhang, W. Zhang, Z. Shen, Y. Chen, J. Li, S. Zhang, Z. Zhang, M. Wuttig, R. Mazzarello, E. Ma, X. Han Zhang, Appl. Phys. Lett. 108, 191902 (2016)

  16. 16.

    W.K. Njoroge, H.W. Woltgens, M. Wuttig, J. Vacuum Sci. Technol. A: Vacuum Surfaces Films 20, 230 (2002)

  17. 17.

    J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

  18. 18.

    J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104 (2001)

  19. 19.

    M. Sato, T. Matsunaga, T. Kouzaki, N. Yamada, MRS Online Proc. Libr. Arch. 803, (2003)

  20. 20.

    J. Akola, R.O. Jones, J. Phys.: Condens. Matter 20, 465103 (2008)

  21. 21.

    A. Roohforouz, A.A. Shokri, AIP Adv. 9, 055120 (2019)

  22. 22.

    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

  23. 23.

    N. Trouillier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

  24. 24.

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

  25. 25.

    S. Datta,Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, UK, 1997)

  26. 26.

    M.P. Anantram, M.S. Lundstrom, D.E Nikonov, Proc. IEEE 96, 1511 (2008)

  27. 27.

    R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

  28. 28.

    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

  29. 29.

    S. Raoux, M. Wuttig,Phase Change Materials Science and Applications (Springer, New York, 2009)

  30. 30.

    V. Heine, Phys. Rev. A 138, 1689 (1965)

  31. 31.

    W. Monch, inElectronic structure of metal-semiconductor contacts (Springer Science and Business Media, 2012), Vol. 4

  32. 32.

    A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, R. Bez, IEEE Trans. Electr. Dev. 51, 452 (2004)

  33. 33.

    M. Kiguchi, K. Saiki, J. Surf. Sci. Nanotechnol. 2, 191 (2004)

  34. 34.

    T. Frederiksen, M. Paulsson, M. Brandbyge, A.P. Jauho, Phys. Rev. B 75, 205413 (2007)

  35. 35.

    M. Paulsson, M. Brandbyge, Phys. Rev. B 76, 115117 (2007)

Download references

Author information

Correspondence to Aliasghar Shokri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roohforouz, A., Shokri, A. Ultrascalability and electron transport properties of ultra-thin film phase change material Ge2Sb2Te5. Eur. Phys. J. B 92, 279 (2019) doi:10.1140/epjb/e2019-100353-1

Download citation

Keywords

  • Mesoscopic and Nanoscale Systems