Advertisement

Spin-resolved transport properties in molybdenum disulfide superlattice

  • Farhad Tavakoli
  • Edris FaizabadiEmail author
  • Seyed Mohammad Elahi
  • Mohammadreza Hantehzadeh
Regular Article
  • 28 Downloads

Abstract

The effects of the perpendicular magnetic field on the multi-barriers system of 5-barriers to 100-barriers are studied. Considering the low-energy Hamiltonian of the system with spin-orbit coupling we modulate the external magnetic field as the Zeeman energy on the orbital magnetic moment. The transport of an incident electron passing through the superlattice created by the top-gated monolayer MoS2 based on the transfer matrix method is investigated and the spin-up and the spin-down transmissions and the spin-polarization for 5-barriers to 100-barriers are obtained. Comparing the results show that in the case of 30-barriers, we have both reliable transmissions for the system and a 100% spin-polarization so that the spin-flip can occur and gives us a desired spintronic device. We also sketched the variations of the transmissions and spin-polarization versus the relative barrier-widths over the well-widths, (D/W), which show the optimum value is 1 by 2, respectively. Finally, we calculate the spin-up and spin-down conductance and total conductivity of the system which shows the so-called resonant tunneling peaks and amplifying the internal spin-orbit coupling with the external magnetic field as the Zeeman energy.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu, J. Wang, W. Hu, H. Liu, Z. Sun, C. Luo, X. Wu, Z. Xu, D.W. Zhang, W. Bao, P. Zhou, Small 14, 1 (2018) Google Scholar
  2. 2.
    A. Kumara, P.K. Ahluwalia, Eur. Phys. J. B 85, 18 (2012) Google Scholar
  3. 3.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010) ADSGoogle Scholar
  4. 4.
    X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M. Buongiorno Nardelli, K.W. Kim, Phys. Rev. B 87, 115418 (2013) ADSGoogle Scholar
  5. 5.
    Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Adv. Mater. 24, 2320 (2012) Google Scholar
  6. 6.
    H. Rostami, R. Asgari, Phys. Rev. B 91, 075433 (2015) ADSGoogle Scholar
  7. 7.
    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C. Te Lin, K. Di Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012) Google Scholar
  8. 8.
    H. Wang, L. Yu, Y.H. Lee, W. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.J. Li, J. Kong, T. Palacios, inTech. Dig. - Int. Electron Devices Meet. IEDM (IEEE, 2012), p. 4.6.1 Google Scholar
  9. 9.
    W. Wu, D. De, S. Chang, Y. Wang, H. Peng, J. Bao, Appl. Phys. Lett. 102, 142106 (2013) ADSGoogle Scholar
  10. 10.
    J. Shi, P. Yu, F. Liu, P. He, R. Wang, L. Qin, J. Zhou, X. Li, J. Zhou, X. Sui, S. Zhang, Y. Zhang, Q. Zhang, T.C. Sum, X. Qiu, Z. Liu, X. Liu, Adv. Mater. 29, 1 (2017) Google Scholar
  11. 11.
    H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A.H. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, G. Eda, Nano Lett. 14, 1909 (2014) ADSGoogle Scholar
  12. 12.
    L. Peng, K. Yao, S. Zhu, Y. Ni, F. Zu, S. Wang, B. Guo, Y. Tian, J. Appl. Phys. 115, 223705 (2014) ADSGoogle Scholar
  13. 13.
    F. Bussolotti, H. Kawai, S.L. Wong, K.E.J. Goh, Phys. Rev. B 99, 045134 (2019) ADSGoogle Scholar
  14. 14.
    Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, M. Zhao, J. Lu, N. Tang, G. Ran, X. Zhang, Y. Ye, L. Dai, Adv. Mater. 30, 1703888 (2018) Google Scholar
  15. 15.
    H. Kim, W. Kim, M. O’Brien, N. McEvoy, C. Yim, M. Marcia, F. Hauke, A. Hirsch, G.T. Kim, G.S. Duesberg, Nanoscale 10, 17557 (2018) Google Scholar
  16. 16.
    J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M.F. Crommie, F. Wang, Sci. Adv. 3, e1700518 (2017) ADSGoogle Scholar
  17. 17.
    K.F. Mak, K. He, J. Shan, T.F. Heinz, Nat. Nanotechnol. 7, 494 (2012) ADSGoogle Scholar
  18. 18.
    Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011) ADSGoogle Scholar
  19. 19.
    X.J. Qiu, Z.Z. Cao, Y.F. Cheng, C.C. Qin, J. Phys.: Condens. Matter 29, 105301 (2017) ADSGoogle Scholar
  20. 20.
    F. Khoeini, K. Shakouri, F.M. Peeters, Phys. Rev. B 94, 125412 (2016) ADSGoogle Scholar
  21. 21.
    H. Yuan, M.S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B.J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa, Y. Iwasa, Nat. Phys. 9, 563 (2013) Google Scholar
  22. 22.
    D. Xiao, G. Bin Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012) ADSGoogle Scholar
  23. 23.
    C. Yang, Z. Wang, Q. Zheng, G. Su, Eur. Phys. J. B 92, 136 (2019) ADSGoogle Scholar
  24. 24.
    X. Cui, E.M. Shih, L.A. Jauregui, S.H. Chae, Y.D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J.H. Park, H.J. Choi, Y.H. Lee, K. Watanabe, T. Taniguchi, P. Kim, C.R. Dean, J.C. Hone, Nano Lett. 17, 4781 (2017) ADSGoogle Scholar
  25. 25.
    J. Martincová, M. Otyepka, P. Lazar, Chemistry 23, 13233 (2017) Google Scholar
  26. 26.
    Y. Pan, H. Yin, K. Huang, Z. Zhang, Q. Zhang, K. Jia, Z. Wu, K. Luo, J. Yu, J. Li, W. Wang, T. Ye, IEEE J. Electron Devices Soc. 7, 483 (2019) Google Scholar
  27. 27.
    A. Dankert, S.P. Dash, Nat. Commun. 8, 16093 (2017) ADSGoogle Scholar
  28. 28.
    Y.K. Luo, J. Xu, T. Zhu, G. Wu, E.J. McCormick, W. Zhan, M.R. Neupane, R.K. Kawakami, Nano Lett. 17, 3877 (2017) ADSGoogle Scholar
  29. 29.
    H. Coy-Diaz, F. Bertran, C. Chen, J. Avila, J. Rault, P. Le Fèvre, M.C. Asensio, M. Batzill, Phys. Stat. Solidi 9, 701 (2015) Google Scholar
  30. 30.
    A.E. Maniadaki, G. Kopidakis, Phys. Stat. Solidi 10, 453 (2016) Google Scholar
  31. 31.
    Z.P. Niu, Y.M. Zhang, S. Dong, New J. Phys. 17, 73026 (2015) Google Scholar
  32. 32.
    D. Kotekar-Patil, J. Deng, S.L. Wong, C.S. Lau, K.E.J. Goh, Appl. Phys. Lett. 114, 013508 (2019) ADSGoogle Scholar
  33. 33.
    E. Faizabadi, M. Esmaeilzadeh, F. Sattaria, Eur. Phys. J. B 85, 198 (2012) ADSGoogle Scholar
  34. 34.
    D. Xiao, G. Bin Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012) ADSGoogle Scholar
  35. 35.
    F. Cheng, Y. Ren, J.F. Sun, Chin. Phys. Lett. 32, 107301 (2015) ADSGoogle Scholar
  36. 36.
    J.F. Sun, F. Cheng, J. Appl. Phys. 115, 5 (2014) Google Scholar
  37. 37.
    K. Sugawara, T. Sato, Y. Tanaka, S. Souma, T. Takahashi, Appl. Phys. Lett. 107, 071601 (2015) ADSGoogle Scholar
  38. 38.
    Y. Miao, Y. Huang, H. Bao, K. Xu, F. Ma, P.K. Chu, J. Phys.: Condens. Matter 30, 215801 (2018) ADSGoogle Scholar
  39. 39.
    T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys.: Condens. Matter 25, 215301 (2013) ADSGoogle Scholar
  40. 40.
    X. Li, F. Zhang, Q. Niu, Phys. Rev. Lett. 110, 066803 (2013) ADSGoogle Scholar
  41. 41.
    H. Ochoa, R. Roldán, Phys. Rev. B 87, 245421 (2013) ADSGoogle Scholar
  42. 42.
    P. Ye, R.Y. Yuan, Y.Y. Xia, X. Zhao, J. Phys.: Conf. Ser. 827, 012011 (2017) Google Scholar
  43. 43.
    T. Yokoyama, Phys. Rev. B 77, 073413 (2008) ADSGoogle Scholar
  44. 44.
    H. Rostami, A.G. Moghaddam, R. Asgari, Phys. Rev. B 88, 085440 (2013) ADSGoogle Scholar
  45. 45.
    L.G. Wang, X. Chen, J. Appl. Phys. 109, 033710 (2011) ADSGoogle Scholar
  46. 46.
    Y. Zhang, J. Ye, Y. Matsuhashi, Y. Iwasa, Nano Lett. 12, 1136 (2012) ADSGoogle Scholar
  47. 47.
    Z.P. Niu, F.X. Li, B.G. Wang, L. Sheng, D.Y. Xing, Eur. Phys. J. B 66, 245 (2008) ADSGoogle Scholar
  48. 48.
    Y.X. Li, J. Phys.: Condens. Matter 22, 1 (2010) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Farhad Tavakoli
    • 1
  • Edris Faizabadi
    • 2
    Email author
  • Seyed Mohammad Elahi
    • 1
  • Mohammadreza Hantehzadeh
    • 1
  1. 1.Department of PhysicsSciences & Research Branch, Islamic Azad UniversityTehranIran
  2. 2.School of Physics, Iran University of Science & TechnologyTehranIran

Personalised recommendations