Advertisement

New aspects of polaron dynamics in electric field

  • Tatiana AstakhovaEmail author
  • George Vinogradov
Regular Article
  • 19 Downloads

Abstract

The dynamics of a polaron in polyacetylene (PA) in an electric field is studied in detail. It is shown that the dependence of polaron velocity on the applied field is determined by the vibrational spectrum of PA. A polaron moving in an electric field with a supersonic velocity generates monochromatic oscillations of the optical branch of the PA vibrational spectrum. The polaron velocity is equal to the phase velocity of these oscillations. Parameters of a moving polaron and an excited mode are determined by the balance between the energy gained by the polaron in the electric field and the energy dissipated into the lattice. The Basco’s algorithm [D.M. Basko, E.M. Conwell, Phys. Rev. Lett. 88, 056401 (2002)] developed earlier for the single-electron model is also applied for the model under consideration.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977) ADSCrossRefGoogle Scholar
  2. 2.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 16, 578 (1977) CrossRefGoogle Scholar
  3. 3.
    A.J. Heeger, Rev. Mod. Phys. 73, 681 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979) ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988) ADSCrossRefGoogle Scholar
  6. 6.
    R. Jackiw, C. Rebbi, Phys. Rev. D. 13, 3398 (1976) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. De Sio, F. Troiani, M. Maiuri, J. Rehault, E. Sommer, J. Lim, S.F. Huelga, M.B. Plenio, C.A. Rozzi, G. Cerullo, E. Molinari, Ch. Lienau, Nat. Commun. 7, 13742 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    M.J.L. Santos, A.G. Brolo, E.M. Girotto, Electrochim. Acta 52, 6141 (2007) CrossRefGoogle Scholar
  9. 9.
    R.C. Huber, A.S. Ferreira, R. Thompson, D. Kilbride, N.S. Knutson, L.S. Devi, D.B. Toso, J.R. Challa, Z.H. Zhou, Y. Rubin, B.J. Schwartz, S.H. Tolbert, Science 348, 1340 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    I.J. Porter, S.K. Cushing, L.M. Carneiro, A. Lee, J.C. Ondry, J.C. Dahl, H.-T. Chang, A.P. Alivisatos, S.R. Leone, J. Phys. Chem. Lett. 9, 4120 (2018) CrossRefGoogle Scholar
  11. 11.
    K. Miyata, D. Meggiolaro, M.T. Trinh, P.P. Joshi, E. Mosconi, S.C. Jones, F. De Angelis, X.-Y. Zhu, Sci. Adv. 3, e1701217 (2017) CrossRefGoogle Scholar
  12. 12.
    M. Bonn, K. Miyata, E. Hendry, X.-Y. Zhu, ACS Energy Lett. 2, 2555 (2017) CrossRefGoogle Scholar
  13. 13.
    L.M. Carneiro, S.K. Cushing, Ch. Liu, Y. Su, P. Yang, A.P. Alivisatos, S.R. Leone, Nat. Mater. 16, 819 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    A. Solanki, A. Bagui, G. Long, B. Wu, T. Salim, Y. Chen, Y.M. Lam, T.Ch. Sum, ACS Appl. Mater. Interfaces 8, 32282 (2016) CrossRefGoogle Scholar
  15. 15.
    H. Kuang, J. Wang, J. Li, F-x. Hu, J-r. Sun, B-g. Shen, AIP Adv. 7, 055814 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    K. Rossnagel, Nat. Mater. 17, 654 (2018) ADSCrossRefGoogle Scholar
  17. 17.
    H. Frohlich, Proc. R. Soc. Lond. A 215, 291 (1952) ADSCrossRefGoogle Scholar
  18. 18.
    T. Holstein, Ann. Phys. 8, 325 (1959) ADSCrossRefGoogle Scholar
  19. 19.
    T. Holstein, Ann. Phys. 8, 343 (1959) ADSCrossRefGoogle Scholar
  20. 20.
    A.S. Davydov, Phys. Scr. 20, 387 (1979) ADSCrossRefGoogle Scholar
  21. 21.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980); [erratum: Phys. Rev. B. 28, 1138 (1983)] ADSCrossRefGoogle Scholar
  22. 22.
    E.J. Meier, F.A. An, B. Gadway, Nat. Commun. 7, 13986 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    Y.H. Yan, Z. An, C.Q. Wu, Eur. Phys. J. B 42, 157 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    Y.D. Wang, X.G. Zhang, Y. Meng, B. Di, Y.L. Zhang, Z. An, Org. Electron. 49, 286e291 (2017) Google Scholar
  25. 25.
    M.L. Pereira Junior, R.T. da Costa Torres, B.G. Enders, W.F. da Cunha, R.T. de Sousa Júnior, L.A. Ribeiro Júnior, Synth. Met. 253, 34 (2019) CrossRefGoogle Scholar
  26. 26.
    J.H. Wei, X.J. Liu, J. Berakdar, Yi.J. Yan, J. Chem. Phys. 128, 165101 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    M.L. Pereira Junior, W.F. da Cunha, R.T. de Sousa Junior, G.M. e Silva, L.A. Ribeiro, J. Phys. Chem. C 123, 13410 (2019) CrossRefGoogle Scholar
  28. 28.
    Y. Sakai, A. Terai, J. Phys. Soc. Jpn. 88, 054718 (2019) ADSCrossRefGoogle Scholar
  29. 29.
    G.G. Silva, L.A. Ribeiro Junior, M.L. Pereira Junior, A.L. de Almeida Fonseca, R.T. de Sousa Júnior, G.M. e Silva, Sci. Rep. 9, 2909 (2019) ADSCrossRefGoogle Scholar
  30. 30.
    J.H. Bombile, M.J. Janik, S.T. Milner, Phys. Chem. Chem. Phys 20, 317 (2018) CrossRefGoogle Scholar
  31. 31.
    M.B. Falleiros, G.M. e Silva, J. Phys. Chem. A. 123, 1319 (2019) CrossRefGoogle Scholar
  32. 32.
    M.L. Pereira, R.T. de Sousa, G.M. e Silva, L.A. Ribeiro, J. Phys. Chem. C 123, 4715 (2019) CrossRefGoogle Scholar
  33. 33.
    M. Kang, S.W. Jung, W.J. Shin, Y. Sohn, S.H. Ryu, T.K. Kim, M. Hoesch, K.S. Kim, Nat. Mater. 17, 676 (2018) ADSCrossRefGoogle Scholar
  34. 34.
    D. Hennig, C. Neißner, M.G. Velarde, W. Ebeling, Phys. Rev. B 73, 024306 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    A.P. Chetverikov, W. Ebeling, E. Scholl, M.G. Velarde, Eur. Phys. J. B 92, 122 (2019) ADSCrossRefGoogle Scholar
  36. 36.
    A.P. Chetverikov, W. Ebeling, E. Scholl, M.G. Velarde, Int. J. Dyn. Control 6, 1376 (2018) MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 89, 196 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    Y. Meng, G-j. Guo, Y-d. Wang, Y.-f. Li, Zh. An, Eur. Phys. J. B 90, 72 (2017) ADSCrossRefGoogle Scholar
  39. 39.
    Y.L. Zhang, X.J. Liu, Z. An, EPL 111, 17009 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    X. Li, D. Hou, G. Chen, Physica E 108, 1 (2019) ADSCrossRefGoogle Scholar
  41. 41.
    X.J. Liu, X.Y. Wang, Y.L. Zhang, S. Wang, Z. An, Organ. Electron. 25, 261 (2015) CrossRefGoogle Scholar
  42. 42.
    K.K. Thornber, R.P. Feynman, Phys. Rev. B 1, 4099 (1970) ADSCrossRefGoogle Scholar
  43. 43.
    Y. Ono, A. Terai, J. Phys. Soc. Jpn. 59, 2893 (1990) ADSCrossRefGoogle Scholar
  44. 44.
    Y. Arikabe, M. Kuwabara, Y. Ono, J. Phys. Soc. Jpn. 65, 1317 (1996) ADSCrossRefGoogle Scholar
  45. 45.
    A. Johansson, S. Stafström, Phys. Rev. Lett. 86, 3602 (2001) ADSCrossRefGoogle Scholar
  46. 46.
    A. Johansson, S. Stafström, Phys. Rev. B. 69, 235205 (2004) ADSCrossRefGoogle Scholar
  47. 47.
    X. Liu, K. Gao, J. Fu, Y. Li, J. Wei, Sh. Xie, Phys. Rev. B. 74, 172301 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    X.-J. Liu, K. Gao, Y. Li, J.-H. Wei, Sh.-J. Xie, Chin. Phys. 16, 2091 (2007) ADSCrossRefGoogle Scholar
  49. 49.
    W.F. da Cunha, P.H. de Oliveira Neto, R. Gargano, G.M. e Silva, Int. J. Quantum Chem. 108, 2448 (2008) ADSCrossRefGoogle Scholar
  50. 50.
    M.V.A. da Silva, P.H. de Oliveira Neto, W.F. da Cunha, R. Gargano, G.M. e Silva, Chem. Phys. Lett. 550, 146 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    Y. Yao, Y. Qiu, Ch.-Q. Wu, J. Phys.: Condens. Matter 23, 305401 (2011) Google Scholar
  52. 52.
    L.A. Ribeiro, W.F. da Cunha, P.H. de Oliveria Neto, R. Gargano, G.M. e Silva, New J. Chem. 37, 28292836 (2013) CrossRefGoogle Scholar
  53. 53.
    L.A. Ribeiro, S.S. de Brito, P.H. de Oliveira Neto, Chem. Phys. Lett. 644, 121 (2016) ADSCrossRefGoogle Scholar
  54. 54.
    S.V. Rakhmanova, E.M. Conwell, Appl. Phys. Lett. 75, 1518 (1999) ADSCrossRefGoogle Scholar
  55. 55.
    S.V. Rakhmanova, E.M. Conwell, Synth. Met. 110, 37 (2000) CrossRefGoogle Scholar
  56. 56.
    A.N. Korshunova, V.D. Lakhno, Tech. Phys. 63, 1270 (2018) CrossRefGoogle Scholar
  57. 57.
    H.N. Nazareno, P.E. de Brito, Physica B 494, 1 (2016) ADSCrossRefGoogle Scholar
  58. 58.
    M.R. Mahani, A. Mirsakiyeva, A. Delin, J. Phys. Chem. C 121, 10317 (2017) CrossRefGoogle Scholar
  59. 59.
    V.D. Lakhno, A.N. Korshunova, Eur. Phys. J. B. 79, 147 (2011) ADSCrossRefGoogle Scholar
  60. 60.
    J.F. Yu, C.Q. Wu, X. Sun, K. Nasu, Phys. Rev. B 70, 064303 (2004) ADSCrossRefGoogle Scholar
  61. 61.
    D.M. Basko, E.M. Conwell, Phys. Rev. Lett. 88, 056401 (2002) ADSCrossRefGoogle Scholar
  62. 62.
    T. Astakhova, G. Vinogradov, Eur. Chem. Bull. 7, 172 (2018) CrossRefGoogle Scholar
  63. 63.
    A. Terai, Y. Ono, J. Phys. Soc. Jpn. 55, 213 (1986) ADSCrossRefGoogle Scholar
  64. 64.
    T.Yu. Astakhova, V.N. Likhachev, G.A. Vinogradov, Russ. J. Phys. Chem. B 7, 521 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical Physics RASMoscowRussia

Personalised recommendations