Time evolution of statistical properties of a radiation field described by a density operator that interpolates between pure and mixing states
- 30 Downloads
Abstract
In this work, we consider a different model of density operator and a heuristic procedure that interpolates a photonic system from pure to mixed states. It is interpreted as if, during the time evolution of the system, the variables of a (hidden) system reservoir being traced. The aim is to study the time evolution of statistical properties while the system loses its initial purity. For this purpose, the system impurity, the evolution of Mandel parameter and entropy were calculated. A comparison between Shannon and von Neumann entropies in the present scenario is done, which could be of interest in quantum information. Another comparison, between the present approach with the traditional treatment concerning decoherence of a system state, was also considered.
Graphical abstract
Keywords
Solid State and MaterialsReferences
- 1.M. Born, P. Jordan, Z. Phys. 34, 858 (1925) ADSCrossRefGoogle Scholar
- 2.M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1926) ADSCrossRefGoogle Scholar
- 3.C. Gerry, P.L. Knight,Introductory Quantum Optics (Cambridge University Press, New York, 2005) Google Scholar
- 4.S.M. Barnett, D.T. Pegg, Phys. Rev. A 60, 4965 (1999) ADSCrossRefGoogle Scholar
- 5.L.A. de Souza, B. Baseia, J.M.C. Malbouisson, Phys. Lett. A 309, 5 (2003) ADSMathSciNetCrossRefGoogle Scholar
- 6.K. Husimi, Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki 22, 264 (1940) Google Scholar
- 7.P.S. Hubbard, Rev. Mod. Phys. 33, 249 (1961) ADSMathSciNetCrossRefGoogle Scholar
- 8.K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1882 (1969) ADSCrossRefGoogle Scholar
- 9.M. Hillery, Phys. Lett. A 111, 409 (1985) ADSMathSciNetCrossRefGoogle Scholar
- 10.J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990) ADSCrossRefGoogle Scholar
- 11.D.T. Smithey et al., Phys. Rev. Lett. 70, 1244 (1993) ADSGoogle Scholar
- 12.L.S. Costanzo, Phys. Rev. Lett. 119, 13601 (2017) ADSCrossRefGoogle Scholar
- 13.B. Schumacher, Phys. Rev. A. 51, 2738 (1995) ADSMathSciNetCrossRefGoogle Scholar
- 14.M. Reboiro, O. Civitarese, D. Tielas, Int. J. Mod. Phys. B 27, 1350117 (2013) ADSCrossRefGoogle Scholar
- 15.M. Reboiro, O. Civitarese, D. Tielas, J. Russ. Laser Res. 35, 110 (2014) CrossRefGoogle Scholar
- 16.C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948) CrossRefGoogle Scholar
- 17.F. Sagasta, K.F. Tee, R. Piotrkowski, J. Nondestruct. Eval. 38, 27 (2019) CrossRefGoogle Scholar
- 18.O.R. de Araujo et al., Mod. Phys. Lett. A 34, 1950017 (2019) ADSCrossRefGoogle Scholar
- 19.A.-S.F. Obada et al., Phys. Rev. A 48, 3174 (1993) ADSCrossRefGoogle Scholar
- 20.B. Baseia, S.D. Duarte, J.M.C. Malbouisson, J. Opt. B 3, 152 (2001) ADSCrossRefGoogle Scholar
- 21.H.M. Nussenzveig, Introduction to Quantum Optics, Documents on Modern Physics: Gordon and Breach (Gordon and Breach Science Publishers, New York, 1973) Google Scholar
- 22.B. Baseia, H.M. Nussenzveig, Optica Acta 31, 39 (1984) ADSCrossRefGoogle Scholar
- 23.J.C. Penaforte, B. Baseia, Phys. Rev. A 30, 1401 (1984) ADSCrossRefGoogle Scholar
- 24.J.C. Penaforte, B. Baseia, Phys. Lett. A 107, 250 (1985) ADSCrossRefGoogle Scholar
- 25.I. Guedes, J.C. Penaforte, B. Baseia, Phys. Rev. A 40, 2463 (1989) ADSCrossRefGoogle Scholar
- 26.I. Guedes, B. Baseia, Phys. Rev. A 42, 6858 (1990) ADSCrossRefGoogle Scholar
- 27.J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 82, 5181 (1999) ADSCrossRefGoogle Scholar
- 28.W.H. Zurek, Los Alamos Science 27, 86 (2002) Google Scholar
- 29.W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003) ADSCrossRefGoogle Scholar
- 30.H. Carmichael, An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991, Lecture Notes in Physics Monographs (Springer, Berlin, 2009) Google Scholar
- 31.J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992) ADSCrossRefGoogle Scholar
- 32.R. Loudon, Optica Acta 30, 7 (1983) ADSCrossRefGoogle Scholar
- 33.C.M. Bender, Rep. Prog. Phys. 70, 947 (2007) ADSCrossRefGoogle Scholar
- 34.C.M. Bender et al., J. Phys. A 45, 440301 (2012) CrossRefGoogle Scholar
- 35.M.H.Y. Moussa, S.S. Mizrahi, O.A. Caldeira, Phys. Lett. A 221, 145 (1996) ADSCrossRefGoogle Scholar
- 36.A. Fring, M.H.Y. Moussa, Phys. Rev. A 93, 42114 (2016) ADSCrossRefGoogle Scholar
- 37.W.H. Louisell, Quantum Statistical Properties of Radiation, Wiley Classics Library (John Wiley & Sons, New York, 1990) Google Scholar
- 38.V.V. Dodonov et al., Ann. Phys. 371, 296 (2016) ADSCrossRefGoogle Scholar
- 39.M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996) ADSCrossRefGoogle Scholar
- 40.V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Physica 72, 597 (1974) ADSMathSciNetCrossRefGoogle Scholar
- 41.A. Peres, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics (Springer, Netherlands, 2006) Google Scholar
- 42.J. Von Neumann, Mathematical Foundations of Quantum Mechanics, translated from the German edition by Robert T. Beyere (Princeton University Press, Princeton, 1955) Google Scholar
- 43.E. Merzbacher,Quantum Mechanics, 3rd edn. (John Wiley & Sons, New York, 1998) Google Scholar
- 44.A.R. Gomes, B. Baseia, G.C. Marques, Mod. Phys. Lett. B 9, 999 (1995) ADSCrossRefGoogle Scholar
- 45.L.P.A. Maia, B. Baseia, A.T. Avelar, J.M.C. Malbouisson, J. Opt. B 6, 351 (2004) ADSCrossRefGoogle Scholar
- 46.D.M. Meekhof et al., Phys. Rev. Lett. 76, 1796 (1996) ADSCrossRefGoogle Scholar