Adaptive cluster expansion for Ising spin models
- 29 Downloads
Abstract
We propose an algorithm to obtain numerically approximate solutions of the direct Ising problem, that is, to compute the free energy and the equilibrium observables of spin systems with arbitrary two-spin interactions. To this purpose we use the Adaptive Cluster Expansion method [S. Cocco, R. Monasson, Phys. Rev. Lett. 106, 090601 (2011)], originally developed to solve the inverse Ising problem, that is, to infer the interactions from the equilibrium correlations. The method consists in iteratively constructing and selecting clusters of spins, computing their contributions to the free energy and discarding clusters whose contribution is lower than a fixed threshold. The properties of the cluster expansion and its performance are studied in detail on one dimensional, two dimensional, random and fully connected graphs with homogeneous or heterogeneous fields and couplings. We discuss the differences between different representations (Boolean and Ising) of the spin variables.
Graphical abstract
References
- 1.S. Cocco, R. Monasson, Phys. Rev. Lett. 106, 090601 (2011) ADSCrossRefGoogle Scholar
- 2.J.P. Barton, E. De Leonardis, Bioinformatics 32, 3089 (2016) CrossRefGoogle Scholar
- 3.H. Chau Nguyen, R. Zecchina, J. Berg, Adv. Phys. 66, 97 (2017) Google Scholar
- 4.S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, M. Weigt, Rep. Prog. Phys. 81, 032601 (2018) ADSCrossRefGoogle Scholar
- 5.S. Cocco, R. Monasson, J. Stat. Phys. 147, 252 (2012) ADSMathSciNetCrossRefGoogle Scholar
- 6.O. Rivoire, Minimal evolutionary scenario for the origin of allostery and coevolution patterns in proteins, https://arXiv:1812.01524 (2018)
- 7.R.A. Farrell, T. Morita, P.H.E. Meijer, J. Chem. Phys. 45, 349 (1966) ADSCrossRefGoogle Scholar
- 8.A. Georges, J.S. Yedidia, J. Phys. A: Math. General 24, 2173 (1991) ADSCrossRefGoogle Scholar
- 9.T. Morita, T. Horiguchi, Solid State Commun. 19, 833 (1976) ADSCrossRefGoogle Scholar
- 10.D.J. Thouless, P.W. Anderson, R.G. Palmer, Philos. Mag. 35, 593 (1977) ADSCrossRefGoogle Scholar
- 11.T. Morita, T. Horiguchi, J. Phys. C: Solid State Phys. 10, 1949 (1977) ADSCrossRefGoogle Scholar
- 12.J.S. Yedidia, W.T. Freeman, Y. Weiss, Understanding belief propagation and its generalizations, inExploring artificial intelligence in the new millennium (2003), Chap. 8, pp. 236–239 Google Scholar
- 13.M. Opper, D. Saad,Advanced mean field methods: Theory and practice (MIT Press, 2001) Google Scholar
- 14.R. Kikuchi, Prog. Theor. Phys. Suppl. 35, 1 (1966) ADSCrossRefGoogle Scholar
- 15.A. Guozhong, J. Stat. Phys. 52, 727 (1988) CrossRefGoogle Scholar
- 16.A. Pelizzola, J. Phys. A: Math. General 38, R309 (2005) ADSMathSciNetCrossRefGoogle Scholar
- 17.M. Yasuda, K. Tanaka, J. Phys. Soc. Jpn. 75, 084006 (2006) ADSCrossRefGoogle Scholar
- 18.C. Chipot, A. Pohorille,Free energy calculations (Springer, 2007) Google Scholar
- 19.D.P. Landau, K. Binder,A guide to Monte Carlo simulations in statistical physics (Cambridge University Press, 2014) Google Scholar
- 20.D. Frenkel, B. Smit, inUnderstanding molecular simulation: from algorithms to applications (Elsevier, 2001), Vol. 1 Google Scholar
- 21.F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001) ADSCrossRefGoogle Scholar
- 22.A.K. Hartmann, Phys. Rev. Lett. 94, 050601 (2005) ADSCrossRefGoogle Scholar
- 23.J. Houdayer, Eur. Phys. J. B 22, 479 (2001) ADSCrossRefGoogle Scholar
- 24.V. Martin-Mayor, B. Seoane, D. Yllanes, J. Stat. Phys. 144, 554 (2011) ADSMathSciNetCrossRefGoogle Scholar
- 25.R.J. Baxter,Exactly solved models in statistical mechanics (Elsevier, 2016) Google Scholar
- 26.K.H. Fischer, J.A. Hertz, inSpin glasses (Cambridge University Press, 1993), Vol. 1 Google Scholar
- 27.M. Mézard, G. Parisi, M. Virasoro, inSpin glass theory and beyond: An Introduction to the Replica Method and Its Applications (World Scientific Publishing Company, 1987), Vol. 9 Google Scholar
- 28.A.K. Hartmann, M. Weigt,Phase transitions in combinatorial optimization problems (Whiley-VCH, Weinheim, 2005) Google Scholar
- 29.M. Mezard, A. Montanari,Information, physics, and computation (Oxford University Press, 2009) Google Scholar
- 30.J. Barton, S. Cocco, J. Stat. Mech.: Theory Exp. 2013, P03002 (2013) CrossRefGoogle Scholar
- 31.F. Rizzato, A. Coucke, E. de Leonardis, J.P. Barton, J. Tubiana, R. Monasson, S. Cocco, Inference of compressed potts graphical models, https://arXiv:1907.12793 (2019)
- 32.M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971) ADSCrossRefGoogle Scholar
- 33.T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004) CrossRefGoogle Scholar
- 34.T. Barthel, C. De Bacco, S. Franz, A matrix product algorithm for stochastic dynamics on locally tree-like graphs, inAPS Meeting Abstracts (2016) Google Scholar
- 35.A. Pelizzola, Eur. Phys. J. B 86, 120 (2013) ADSCrossRefGoogle Scholar
- 36.B. Obermayer, E. Levine, New. J. Phys. 16, 123017 (2014) ADSCrossRefGoogle Scholar