Advertisement

Adaptive cluster expansion for Ising spin models

  • Simona Cocco
  • Giancarlo Croce
  • Francesco ZamponiEmail author
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Topical issue: Recent Advances in the Theory of Disordered Systems

Abstract

We propose an algorithm to obtain numerically approximate solutions of the direct Ising problem, that is, to compute the free energy and the equilibrium observables of spin systems with arbitrary two-spin interactions. To this purpose we use the Adaptive Cluster Expansion method [S. Cocco, R. Monasson, Phys. Rev. Lett. 106, 090601 (2011)], originally developed to solve the inverse Ising problem, that is, to infer the interactions from the equilibrium correlations. The method consists in iteratively constructing and selecting clusters of spins, computing their contributions to the free energy and discarding clusters whose contribution is lower than a fixed threshold. The properties of the cluster expansion and its performance are studied in detail on one dimensional, two dimensional, random and fully connected graphs with homogeneous or heterogeneous fields and couplings. We discuss the differences between different representations (Boolean and Ising) of the spin variables.

Graphical abstract

References

  1. 1.
    S. Cocco, R. Monasson, Phys. Rev. Lett. 106, 090601 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Barton, E. De Leonardis, Bioinformatics 32, 3089 (2016) CrossRefGoogle Scholar
  3. 3.
    H. Chau Nguyen, R. Zecchina, J. Berg, Adv. Phys. 66, 97 (2017) Google Scholar
  4. 4.
    S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, M. Weigt, Rep. Prog. Phys. 81, 032601 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    S. Cocco, R. Monasson, J. Stat. Phys. 147, 252 (2012) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    O. Rivoire, Minimal evolutionary scenario for the origin of allostery and coevolution patterns in proteins, https://arXiv:1812.01524 (2018)
  7. 7.
    R.A. Farrell, T. Morita, P.H.E. Meijer, J. Chem. Phys. 45, 349 (1966) ADSCrossRefGoogle Scholar
  8. 8.
    A. Georges, J.S. Yedidia, J. Phys. A: Math. General 24, 2173 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    T. Morita, T. Horiguchi, Solid State Commun. 19, 833 (1976) ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Thouless, P.W. Anderson, R.G. Palmer, Philos. Mag. 35, 593 (1977) ADSCrossRefGoogle Scholar
  11. 11.
    T. Morita, T. Horiguchi, J. Phys. C: Solid State Phys. 10, 1949 (1977) ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Yedidia, W.T. Freeman, Y. Weiss, Understanding belief propagation and its generalizations, inExploring artificial intelligence in the new millennium (2003), Chap. 8, pp. 236–239 Google Scholar
  13. 13.
    M. Opper, D. Saad,Advanced mean field methods: Theory and practice (MIT Press, 2001) Google Scholar
  14. 14.
    R. Kikuchi, Prog. Theor. Phys. Suppl. 35, 1 (1966) ADSCrossRefGoogle Scholar
  15. 15.
    A. Guozhong, J. Stat. Phys. 52, 727 (1988) CrossRefGoogle Scholar
  16. 16.
    A. Pelizzola, J. Phys. A: Math. General 38, R309 (2005) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Yasuda, K. Tanaka, J. Phys. Soc. Jpn. 75, 084006 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    C. Chipot, A. Pohorille,Free energy calculations (Springer, 2007) Google Scholar
  19. 19.
    D.P. Landau, K. Binder,A guide to Monte Carlo simulations in statistical physics (Cambridge University Press, 2014) Google Scholar
  20. 20.
    D. Frenkel, B. Smit, inUnderstanding molecular simulation: from algorithms to applications (Elsevier, 2001), Vol. 1 Google Scholar
  21. 21.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001) ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Hartmann, Phys. Rev. Lett. 94, 050601 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    J. Houdayer, Eur. Phys. J. B 22, 479 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    V. Martin-Mayor, B. Seoane, D. Yllanes, J. Stat. Phys. 144, 554 (2011) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    R.J. Baxter,Exactly solved models in statistical mechanics (Elsevier, 2016) Google Scholar
  26. 26.
    K.H. Fischer, J.A. Hertz, inSpin glasses (Cambridge University Press, 1993), Vol. 1 Google Scholar
  27. 27.
    M. Mézard, G. Parisi, M. Virasoro, inSpin glass theory and beyond: An Introduction to the Replica Method and Its Applications (World Scientific Publishing Company, 1987), Vol. 9 Google Scholar
  28. 28.
    A.K. Hartmann, M. Weigt,Phase transitions in combinatorial optimization problems (Whiley-VCH, Weinheim, 2005) Google Scholar
  29. 29.
    M. Mezard, A. Montanari,Information, physics, and computation (Oxford University Press, 2009) Google Scholar
  30. 30.
    J. Barton, S. Cocco, J. Stat. Mech.: Theory Exp. 2013, P03002 (2013) CrossRefGoogle Scholar
  31. 31.
    F. Rizzato, A. Coucke, E. de Leonardis, J.P. Barton, J. Tubiana, R. Monasson, S. Cocco, Inference of compressed potts graphical models, https://arXiv:1907.12793 (2019)
  32. 32.
    M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971) ADSCrossRefGoogle Scholar
  33. 33.
    T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004) CrossRefGoogle Scholar
  34. 34.
    T. Barthel, C. De Bacco, S. Franz, A matrix product algorithm for stochastic dynamics on locally tree-like graphs, inAPS Meeting Abstracts (2016) Google Scholar
  35. 35.
    A. Pelizzola, Eur. Phys. J. B 86, 120 (2013) ADSCrossRefGoogle Scholar
  36. 36.
    B. Obermayer, E. Levine, New. J. Phys. 16, 123017 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de ParisParisFrance
  2. 2.Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie computationnelle et quantitative – LCQBParisFrance

Personalised recommendations